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Preface

Writing a preface is possibly the hardest part of work on any book. It is here
that the authors present, in a relatively lighthearted fashion, its content and
place it in a scientific and historical context of the broad field of knowledge to
which it is relevant. So, let us start by explaining how this book came about,
what is in it, and why.

If one works for a long time on similar topics, then the results accumulate
and eventually reach a critical state in which the gaps left in theory are too
insignificant to justify separate papers but relevant enough not to be brushed
off with a notorious phrase: ‘It can be easily proved...’. At this stage one
can either move forward to explore new fields or rest for a while, playing
with the details of the theory. Quite often the choice is dictated by external
circumstances, as was the case with this book when one of the authors (J.B.)
was invited to spend two months as a Visiting Professor at the University of
Franche-Comté in Besancon and had to prepare a set of lectures. The idea that
materialized dates back several years when J.B. was plodding his way through
the rich folklore of transport theory, trying to match rigourous mathematics
with physically relevant applications. What he really needed then was a single
source that would combine mathematical tools of the trade with a guide to
how to use them in concrete models. This is an attempt to produce the book
that he would have liked to have had in his early days as a transport theorist
and we hope that we have succeeded in our endeavours. The completion of this
project, however, was possible only thanks to the expertise in kinetic theory
brought in by the second author (L.A.).

The book is intended to give a survey of relevant facts from functional
analysis, positivity theory, and theory of semigroups, presented at a not too
abstract but also not too superficial (we hope) level, together with many
proofs which are often difficult to find in the literature. On the other hand,
we discuss examples coming from the applied sciences, from population theory,
through fragmentation processes, to various aspects of linear transport theory,
emphasise the difference between the original model and its functional analytic
reformulation, which makes it tractable by techniques introduced in the first
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part, and explore consequences of this dichotomy with major focus on the
phase transitions and existence of multiple solutions.

Choosing a reasonable level of presentation is a daunting task as every
single scientist has a unique mix of theory and applications with which he
or she feels at ease. For instance, a pure mathematician strives to achieve a
theory which is of ultimate generality in a possibly most concise notation, and
a scientist applying mathematics as a tool does not want to read hundreds
of pages of possibly beautiful but hermetic theory to get to a single piece of
information needed in a particular problem. The authors of this book belong,
in their opinion, to the realm of applied mathematics and thus, whilst trying
to uphold mathematical rigour, they sacrificed generality to present results
which are readily applicable and indeed, applied them to concrete physical
problems. On the other hand, the proofs may seem to be too detailed, but
it was the intention of the authors to write this book as an aid rather than
a challenge. Certainly, only the reader can judge to what extent the authors
managed to strike the desired balance of analysis and its applications.

There are many ways of writing a book dealing with these topics. We have
chosen positivity as the main motive of our presentation. Without too much
exaggeration one can say that most of the ideas developed here were already
present in the seminal paper by Kato, [106]. It seems, however, that, especially
in analysis, they were largely forgotten, or used only in an ad hoc fashion, until
the late 1980s when positivity reemerged in the theory of semigroups thanks
to research by W. Arendt, C. Batty, R. Nagel, D. Robinson, and many others,
and on the other hand it was systematically applied in kinetic theory by people
such as J. Voigt, R. Beals, V. Protopopescu, C. van der Mee, and others.

Any book is a compromise between deadlines and our striving for perfec-
tion. Without deadlines no book would be ever possible, as any final version is
but a shadow of the Perfect Book existing in our minds and thus, by default, it
must be imperfect. This one is no exception, surely even more than we would
like to accept.

A number of results were obtained while writing the book and the proofs,
though to our best knowledge correct, did not have time to mature and become
really elegant because of deadlines. We sincerely apologize for it and pray for
readers’ understanding.

Due to time and space constraints we have left out many important topics
(still, in the original contract the book was supposed to have 250 pages).
The most important absentees are: long-time behaviour of solutions, spectral
theory, compactness methods, and links with the probabilistic approach to
similar problems. The main reason for not including these topics is that the
authors do not feel competent enough to discuss them at the level of a research
monograph. The first three are also well researched and easily accessible in a
number of books (see, e.g., [136, 79, 139, 134, 166]). Another great absentee is,
of course, nonlinear theory of the presented problems, though in many cases
the results proved in the book form a necessary linear foundation on which
the nonlinear theory can be based.
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What was left after several rearrangements can be summarized as follows.
Chapter 1 is really an extended preface in which we present a history and
an overview of semigroup theory and, using the birth-and-death system as an
example, explain the importance of the precise identification of the generator
of a semigroup. Chapters 2, 3, and 4 are the reference part of the book and
contain a survey of basic facts from functional analysis, the theory of positive
operators, and the theory of semigroups which are needed in the second, ap-
plied, part of the book. We have included proofs of several theorems which
we think are relevant for understanding the main results of the book as well
as numerous examples, the presence of which was suggested by the referees
to make the first part more readable. However, as mentioned earlier, we have
tried to avoid presenting any theory for its own sake and practically any re-
sult discussed in these chapters appears later in applications. Conversely, the
rationale behind including these chapters in the book was to make it as self-
consistent as possible so that the reader of the applied part does not have to
waste time going through several sources to find the meaning of a particular
phrase. For that reason we have made the references as detailed as possible.

Chapters 5 and 6 form the theoretical core of the book. In Chapter 5 we
present the perturbation results in which the positivity of semigroups and
of the perturbing operators plays an essential role in proving the generation
results. Chapter 6 is devoted to techniques that allow us to characterise the
generator by relating it to the maximal and minimal operators of the prob-
lem. This characterisation allows us to discuss later, among other things, the
physical relevance of the constructed semigroups.

Chapters 7 to 10 are devoted to applications of the theory to models com-
ing from concrete applications. In Chapter 7 we give a full description of the
dynamics of birth-and-death problems. Chapters 8 and 9 are devoted to a
similar analysis of fragmentation problems. Chapter 10 presents a detailed
analysis of the linear Boltzmann equation with external field with both clas-
sical and inelastic scattering kernels. This analysis is supplemented by an
exhaustive treatment of boundary value problems for a streaming operator.

The last chapter contains applications of the positivity theory to the analy-
sis of asymptotic limits of the singularly perturbed linear Boltzmann equation
describing an interplay between elastic and inelastic scattering of particles and
free streaming. The result is a challenging diffusion-kinetic equation, the anal-
ysis of which is possible by various positivity techniques.

No research is done in isolation and the research leading to this book is
not an exception. The first author was introduced to transport theory by J.
R. Mika, who invited him to Durban to work on asymptotic methods. Further
development, however, would not have been possible without interactions with
a vibrant community of Italian transport theorists of which the second author
is an active member. The contacts were initially possible thanks to V. Bofhi
and generous grants from the Italian CNR but later ran their own course.
J.B. is very grateful for the warm hospitality of G. Frosali and A. Belleni-
Morante in Florence and G. Spiga in Parma and, together with the second
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author, they acknowledge a very fruitful collaboration with them. L.A. would
also like to thank G. Busoni of Florence who introduced her to kinetic theory.
Both authors acknowledge fruitful discussions with C. van der Mee of Cagliari
who pioneered using similar techniques for transport equations in the 1980s
and who was aware of many results presented here long before the authors.

The development of the theory also would not have been possible without
collaboration with W. Lamb from the University of Strathclyde in Glasgow
who exposed J.B. to the fragmentation equations which, being simpler than
the Boltzmann equation but still preserving its analytical structure, offered
much needed testing grounds for the ideas initiated in the early 1990s by L.A.,
developed later by J.B., and finalized jointly during a sabbatical visit of J.B.
in Udine. It was during this visit that the first idea of writing the book began
to emerge. One should also mention the joint work with M. Lachowicz of
the University of Warsaw which resulted in the abstract version of the Kato
generation theorem and the existence results for the birth-and-death type
systems, as well as with B. Lods of Turin who, together with L.A., developed
the ideas of the substochastic theory of boundary operators.

Finally, as mentioned earlier, a draft of the first few chapters was written
as a set of lecture notes for a course on substochastic semigroups when J.B.
was a Visiting Professor in Besangon, invited by M. Mokhtar-Kharroubi. A
number of people endured this course but special thanks go to L. Jeanjean
whose queries greatly improved the presentation of the first chapters of the
book, and of course to M. Mokhtar-Kharroubi for providing the opportunity of
spending two months in the excellent scientific environment at the University
of Franche-Comté and for his role in advancing several presented results.

The conversion from loose ideas and rough lecture notes to a formal book
took place when G. Roach recommended its publication to Springer Verlag
and then the process was efficiently guided by Springer editors, S. Harding
and later H. Desmond, who patiently endured the ever-changing deadline.
Special thanks go also to the School Secretary, D. Haslop, who was exposed
to 450 pages of Polish English and tried to convert it into something readable,
and to B. Lods who, having read the whole manuscript, picked up numerous
mistakes and provided many useful suggestions.

Whatever good can be said about the book is due to the help and support
of all the people mentioned above, whereas all shortcomings, gaps, and incon-
sistencies that have remained should be blamed entirely upon the authors.

Last but not least, J.B. wishes to acknowledge the financial support from
the University of Natal Research Fund and the National Research Foundation
of South Africa which have made his numerous collaborative trips to Italy,
Poland, Scotland, and France possible.

Durban, Udine Jacek Banasiak
March 2005 Luisa Arlotti



1

Introduction

1.1 What the Theory of Semigroups Is All About

Laws of physics and, increasingly, also those of other sciences are in many
cases expressed in terms of differential or integro—differential equations. If one
models systems evolving with time, then the variable describing time plays a
special role, as the equations are built by balancing the change of the system in
time against its ‘spatial’ behaviour. In mathematics such equations are called
evolution equations.

Equations of the applied sciences are usually formulated pointwise; that is,
all the operations, such as differentiation and integration, are understood in
the classical (calculus) sense and the equation itself is supposed to be satisfied
for all values of the independent variables in the relevant domain.

The ideal situation of course is if, for a given equation, one can find an exact
solution in terms of elementary functions or quadratures as then the evolution
is given explicitly. Though a lot of effort is directed towards finding exact
solutions, because they are most welcomed by practitioners, the unfortunate
fact of life is that most of the really interesting equations cannot be treated
in such a way.

The way forward is to look at problems from a more general and abstract
perspective and, without trying to find solutions, determine whether they
exist, whether they are unique, and how they behave under perturbation of
data and for large values of time. Answering these questions serves at least as
a partial validation of the model and also provides a firm foundation for the
numerical analysis of the equation which eventually leads to answers requested
by practitioners.

This book is devoted predominantly to one particular way of looking at
the evolution of a system in which we describe time changes as transitions
from one state to another; that is, the evolution is described by a family of
operators, parameterised by time, that map an initial state of the system to
all subsequent states in the evolution. This leads in a natural way to the
theory of semigroups that has developed, in the last 50 to 60 years, into a
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very elegant piece of mathematics, almost complete in the linear case but
still presenting many interesting challenges in the nonlinear one. There are a
number of excellent presentations of this theory, both from pure and applied
points of view, ranging from the classical treatise of Hille and Phillips [100],
through [51, 54, 79, 82, 89, 128, 132, 141], to mention but a few.

To explain the theory of semigroups, let us consider the equation

au(t,z) = [Au(t, )](z), z€

u(t,0) = 4, (1.1)

where A is a certain expression, differential, integral, or functional, that can
be evaluated at any point x € {2 for all functions from a certain subset S.

If we are using a functional-analytic approach, then we have to place ev-
erything in some abstract space X which is chosen partially for the relevance
to the problem and partially for mathematical convenience. For example, if
(1.1) describes the evolution of an ensemble of particles, then w is the particle
density function and the natural space seems to be L;(f2) as in this case the
norm of a nonnegative u, that is, the integral over {2, gives the total number of
particles in the ensemble. It is important to note that this choice is not unique
but is rather a mathematical intervention into the model, which could change
it in a quite dramatic way. For instance, in this case we could choose the space
of measures on {2 with the same interpretation of the norm, but also, if we
are interested in controlling the maximal concentration of particles, a more
proper choice would be some reasonable space with a supremum norm, such
as, for example, the space of bounded continuous functions on 2, Cy(£2).

Once we select our space, the right-hand side can be interpreted as an
operator A : D(A) — X (we hope) defined on some subset D(A) of X (not
necessarily equal to X) such that x — [Au](z) € X. With this, (1.1) can be
written as an ordinary differential equation in X:

uy = Au, t >0,
u(0) = up € X. (1.2)

The domain D(A) is also not uniquely defined by the model. Clearly, we
would like to choose it in such a way that the solution originating from D(A)
could be differentiated and belong to D(A) so that both sides of the equation
make sense. As we shall see, semigroup theory in some sense forces D(A)
upon us, although it is not necessarily the optimal choice from a modelling
point of view. Although throughout the book we assume that the underlying
space is given, the choice of D(A), on which we define the realisation A of the
expression A, is a more complicated thing. This problem is discussed in more
detail in the next section of the Introduction; here we briefly sketch ways of
solving (1.2).

In the theory of differential equations, one of the first differential equations
encountered is
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u'(t) = au(t), aeC (1.3)

with initial condition u(0) = ug. It is not difficult to verify that u(t) = e'®uq
is a solution of Eq. (1.3).

As early as in 1887, G.P. Peano showed that the system of linear ordinary
differential equations with constant coefficients

!
U} = 11Ul + -+ Qipln,

. (1.4)
U;L = Qp1U1 + -+ Qpplin,
can be written in a matrix form as
u'(t) = Au(t), (1.5)

where A is an nxn matrix {aij}lgi,jgn and u is an n-vector whose components
are unknown functions, and can be solved using the explicit formula

u(t) = eug, (1.6)
where the matrix exponential ' is defined by

tA  12A?
tA P —_— —_— ...
et =1+ 1!+ o1 +oe (1.7)
Taking a norm on C" and the corresponding matrix-norm on M, (C), the
space of all complex n X n matrices, one shows that the partial sums of the
series (1.7) form a Cauchy sequence and converge. Moreover, the map t — ‘4
is continuous and satisfies the properties, [79, Proposition 1.2.3]:

(t+s)A _ _tA_sA
ZOA - _67. e forallt,s >0 (1.8)
Thus the one-parameter family {etA}tZO is a homomorphism of the additive
semigroup [0, 00) into a multiplicative semigroup of matrices M,, and forms
what is termed a semigroup of matrices.
The representation (1.7) can be used to obtain a solution of the abstract
Cauchy problem
u'(t) = Au(t),

w(0) = uo, (1.9)

where A : X — X is a bounded linear operator, as in this case the series
in (1.7) is still convergent with respect to the norm in the space of linear
operators L£(X).

In general, however, the operators coming from applications, such as, for
example, differential operators, are not bounded on the whole space X and
(1.7) cannot be used to obtain a solution of the abstract Cauchy problem (1.9).
This is due to the fact that the domain of the operator A in such cases is a
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proper subspace of X and because (1.7) involves iterates of A, their common
domain could shrink to the trivial subspace {0}. For the same reason, another
common representation of the exponential function

t n
et = lim <1 + A) : (1.10)
n—oo n
cannot be used. For a large class of unbounded operators a variation of the
latter, however, makes the representation (1.6) meaningful with e!* calculated

according to the formula

—n _1n
etz = lim ([ — tA) x = lim {n (E — A) } x. (1.11)
n t

n—oo t

Roughly speaking, the above limit exists and defines a strongly continuous
semigroup (G(t)):>0, that is, a family of bounded linear operators G(t) satis-

fying

1. G(t+s) = G(t)G(s) for all t,s > 0;
2. G(0)=1;
3.
lim G(t)x = =z, € X, (1.12)
t—0t
if and only if A is a densely defined closed operator and there exist numbers
M,w € R, M > 0 such that the resolvent set of A contains the half-line (w, c0)
and the Hille-Yosida estimates
M

[(AL—A)™"| < D= A>w (1.13)

are satisfied. The operator A is then called the generator of (G(t))i>o. We shall
discuss the Hille-Yosida theorem in more detail later but for the time being
it is important to observe that the requirement (1.12) of strong continuity of
(G(t))e>0 rather than continuity in uniform operator topology is dictated by
the fact that (G(¢))¢>0 is continuous in the operator topology if and only if A
is bounded (see [141]) and, as we mentioned earlier, bounded operators are of
a limited interest.

The algebraic condition 1 results from our attempt to preserve as many
properties of an exponential function as possible but on the other hand reflects
the principle of determinism: if the outside conditions do not change, then the
system starting from a state xg at t = 0, after time ¢ 4+ s should be in the
same state as having started from the initial condition G(t)zq after time s.
In other words, we should be able to break and restart the evolution of the
system at any time without changing the final state.

It is also important to realize that if x € D(A), then the function ¢t —
u(t,z) = G(t)z is continuously differentiable with respect to ¢ > 0 in the
norm of X and is a unique solution to the Cauchy problem
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du
— =A t>0
dt u7 > )

lim u(t) = x.
t—0+ ()

In general, for x € X \ D(A), G(t)x is not differentiable unless (G(t))¢>0 has
some additional regularity properties.

It is also crucial to realize the importance of the domain of the generator.
A semigroup (G(t));>0 uniquely determines the generator (A4, D(A)), where A
is some rule and D(A) is a domain on which this rule is the generator. There
may be (and in fact there are) infinitely many possible realisations of this rule
and, in principle, infinitely many semigroups generated by these realisations;
the difference is in the domain to which the rule is restricted. Conversely, if
(A, D(A)) is a generator, then the semigroup it determines is unique.

Thus, in principle, we have a tool to solve problems of the form (1.2). In
practice, however, checking estimates (1.13) is very difficult if not impossible
as it requires solving iterates of, typically, partial or integro-partial differential
equations. Though there is an important class of so-called dissipative operators
satisfying (1.13) with M = 1 and w = 0, in which case it is enough to prove
the estimates just for the resolvent, there is a need to find ways of proving
the existence of semigroups other than by directly checking (1.13).

In many cases the right-hand side of (1.2) splits in a natural way into the
sum of two operators so that the Cauchy problem can be written as

d
d—? = Au+ Bu, t>0,
lim w(t) = x,

t—0+

where, quite often, it is relatively easy to show that A generates a semigroup,
say (Ga(t))t>0. Thus, it is important to determine a class, or classes, of op-
erators, the addition of which will not destroy this property; that is, A + B
will still be the generator of a semigroup.

The simplest class of operators admissible in this sense is the class of
bounded operators. In fact, if (A4, D(A)) is a generator, then (A + B, D(A))
is also a generator. However, the class of bounded operators is, as usual,
too restrictive for many applications. The next step is to consider unbounded
operators that are in some sense weaker than A. There are two ways to achieve
this: by directly comparing A with B and by comparing B with (G 4(t)):>o0-
First, we say that B is an A-bounded operator if D(B) D D(A) and there are
a,b > 0 such that

|Bz| < allAz| + b||z]|, x € D(A). (1.14)

Then, if B is A-bounded and there are o > 0 and 0 < v < 1 such that

/ |BSa(t)z|dt < Al (1.15)
0
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for any x € D(A), then (A + B, D(A)) is also the generator of a semigroup.

Although the condition (1.15) is quite general, it is difficult to check as it
requires a rather complete knowledge of the semigroup (G 4(t)):>0 that is often
difficult to achieve. Strengthening assumptions, we can prove that if A +tB
are dissipative for all ¢ € [0, 1] with A generating a semigroup (or, e.g., A and
B dissipative) then (A + B, D(A)) generates a semigroup (of contractions)
provided a < 1.

Note that in both cases there is a constant that must be smaller than 1,
thus indicating that some sort of convergence is involved. Both theorems fail
in general if v or a, respectively, are equal to 1.

What can be done if we have to allow v or a equal to 17 If we keep the
assumptions of the last result, that is, A+¢B is dissipative for all ¢ € [0, 1] (or
A and B are dissipative), a = 1, and B* is densely defined, then the closure
A+ B is the generator of a semigroup.

Note that if X is reflexive space and B is closable and densely defined,
then B* is automatically densely defined. Thus, in such a case, we obtain the
generation of a semigroup by A + B. In many cases, however, the space of in-
terest is not reflexive; in fact the main focus of this book is on Lq spaces which
are not reflexive. Also, closability of an operator is not always easy to check.
Exploiting, however, the lattice structure of the underlying Banach space X
and positivity of the operators involved is advantageous in all branches of
analysis (see, e.g., [137]) and, in particular, allows a substantial improvement
of the perturbation results. Some results in this direction can be found, for
instance, in [11, 157]. Here we adopt another approach, in which we also use
dissipativity of the operators, and prove a number of results with v or a equal
to 1. Unfortunately, a typical result in this direction is that there exists an
extension of A + B that generates a semigroup of contractions, without spec-
ifying this extension. The fact that this extension may be larger than A + B
has a number of consequences which are discussed in the next section. Now we
only note that if this is the case, then the solution does not return laws built
into the model (e.g., conservativity). Thus, it is important to find system-
atic methods that would allow us to characterize the generator. We present
a number of methods of characterization and demonstrate their applicability
on concrete examples.

1.2 What This Book Is All About

In this section we introduce a relatively simple model which nevertheless ex-
hibits all the mathematical features that are discussed in this book.

We consider the classical Markov birth-and-death process that describes
the evolution of a population whose size k at any time ¢ may increase to
k + 1 or decrease to k — 1 owing to a ‘birth’ or ‘death’ of an individual; the
probability that a birth or death occurs in time interval At being by At +o( At)
and dp At + o( At), respectively. If we denote by ug(t) the probability that the
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population is of size k at time ¢, then the corresponding (so-called forward)
Kolmogorov system takes the form:

’
Uy = —boug + diuq,

~

Uy, = _(bn + dn)un +dpt1Unt1 + bp—1Un_1,
(1.16)

We use the convention that boldface letters denote sequences; for example,
u = (g, U, .., Un,...). Wealso put b_; = dy = 0 and, to avoid technicalities,
(see, e.g., [8, p. 100]) we assume that b,,d, > 0 for all other indices.

System (1.16) is considered in the Banach space X = ['; this choice is
dictated by the fact that if uy is the probability, then u; > 0 and

(&)
lull = > ux =1
k=0

so that the norm of X should be preserved in the evolution.

For any Z C X, Z, denotes the cone of nonnegative elements of Z.

It is convenient to write the right-hand side of (1.16) as the sum of two op-
erators. To do this, first we introduce formal mappings of sequences. Remem-
bering the convention b_; = dy = 0, we let w = Au = —{(b,, + d)Un Fnen,-
By B we denote the mapping v = Bu, where v = {d,+1Un+1+bn—1Un—1}nen, -
The formal mappings A and B can define various operators in X. As a basic
choice, we define the operator A in X as the restriction of A to the domain
D(A) ={u € X; Au € X}. In particular, if u € D(A)4, then v=Bu € X,
with

o0
> (vn +wy,) =0. (1.17)
n=0
This allows us to define a positive operator B as the restriction of B to D(A).
It follows then that for u € D(A) we have

[Bul| < [|Aul|. (1.18)

As we said earlier, mathematical equations of the applied sciences are built by
combining various conservation and constitutive laws. They are also formu-
lated and understood pointwise. This means that all the operations, such as
differentiation, summation, or integration, are meant in the classical ‘calcu-
lus’ sense, and the equation itself is supposed to be satisfied for all reasonable
values of the independent variables. Thus the birth-and-death system (1.16)
is basically understood as

u’ = Au + Bu, (1.19)

where the system, taken row by row, should be satisfied for all u for which the
expression above makes sense. Only the probabilistic interpretation suggests
that one should have u,,(t) > 0 for all n € Ny and ¢ > 0, and
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S un(t) = S un(0) =1,  ¢>0.
n=0 n=0

However, if we prove the existence of a semigroup ‘solving’ (1.19), then what
we really obtain is a solution to a particular reformulation of the original
problem in which on the right-hand side stands the generator K of this semi-
group. This generator may be quite different from A + B and only a detailed
characterization of its domain can reveal whether the constructed semigroup
gives the full picture of the dynamics described by Eq. (1.19). As we show,
the generator K is between the minimal operator K, = A + B (defined on
D(A)) and the maximal operator Kyax = A + B defined on

Dpax = {u € X; Au+Bue X};

that is, Kmin C K C Kpax. Where K is situated on this scale determines the
well-posedness of the problem (1.19). The following situations are possible

Knin=K = KmaX7
Kmin g K = Kmin = Kma.)u
Kmin =K Q Kmeun
Kmin (,; K= Kmin g Kmax,
5. E Q K ; K max,

Ll e

and each of them has its own specific interpretation in the model.

In all cases where K & K.« we don’t have uniqueness; that is, there are
differentiable X-valued solutions to (1.19) emanating from zero and therefore
they are not described by the constructed dynamical system: ‘there is more
to life, than meets the semigroup’ [100, 34]. To achieve uniqueness here, one
has to impose additional constraints on the solution.

If Kiin & K, then despite the fact that the model is formally conservative,
(1.17), the solutions are not; the described quantity leaks out from the system
and the mechanism of this leakage is not present in the model. In the Markov
processes such a case is referred to as dishonesty of the transition function,
8]

Finally, as b,,d, are the rates of change of states in the population, for
any solution u(t), the quantity

o0
ALY (by + dp)un () (1.20)
n=0
describes the total number of state changes in the time interval At. Thus
condition u(t) € D(A) for any ¢, equivalent to (1.20) being finite, reflects the
realistic property of a finite total number of ‘switches’ at any time. Thus, if
K # Ky, then an infinite number of state changes in a finite time interval
may occur.
Therefore, strictly speaking, only problems with K = Kpj, = Knax can
be physically realistic. However, in many applications, the last condition is
disregarded and the case K = K, = Kax is considered to be ‘optimal’.




2

Basic Facts from Functional Analysis and
Banach Lattices

2.1 Spaces and Operators

2.1.1 General Notation

The symbol ‘=’ denotes ‘equal by definition’. The sets of all natural (not
including 0), integer, real, and complex numbers are denoted by N, Z, R, C,
respectively. If A € C, then we write & A for its real part, & A for its imaginary
part, and \ for its complex conjugate. The symbols [a,b], (a,b) denote closed
and open intervals in R. Moreover,

R-‘r = [07 00)7
No == {0,1,2,...}.

If there is a need to emphasise that we deal with multidimensional quantities,
we use boldface characters, for example x = (z1,...,z,) € R™. Usually we
use the Euclidean norm in R”, denoted by,

= 2
x| = ¢/ et
=1

If £2 is a subset of any topological space X, then by {2 and Int £2 we denote,
respectively, the closure and the interior of {2 with respect to X. If (X, d) is
a metric space with metric d, we denote by

By ={y e X; d(z,y) <r}

the closed ball with centre x and radius r. If X is also a linear space, then the
ball with radius r centred at the origin is denoted by B,..

Let f be a function defined on a set {2 and = € §2. We use one of the
following symbols to denote this function: f, x — f(z), and f(-). The symbol
f(z) is in general reserved to denote the value of f at x, however, occasionally
we abuse this convention and use it to denote the function itself.
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If {2z, }nen is a family of elements of some set, then the sequence of these
elements, that is, the function n — x,, is denoted by (x,)nen. However,
for simplicity, we often abuse this notation and use (x,)nen also to denote
{xn}n€N~

The derivative operator is usually denoted by 0. However, as we occa-
sionally need to distinguish different types of derivatives of the same func-
tion, we use other commonly accepted symbols for differentiation. To indicate
the variable with respect to which we differentiate we write 0y, 9,, 07, . ... If
x = (21,...,2,) € R", then O := (0y,,...,0s,) is the gradient operator.

If 8:=(B1,...,0n), Bi = 0is a multi-index with |B| :=f1 + -+ Bn =k,
then symbol 92 f is any derivative of f of order k. Thus, Zrm:oaﬁ f means
the sum of all derivatives of f of order less than or equal to k.

If 2 C R™ is an open set, then for k € N the symbol C*(£2) denotes
the set of k£ times continuously differentiable functions in 2. We denote by
C(02) := C°(£2) the set of all continuous functions in {2 and

C>®(02) = ﬁ Cck(92).
k=0

Functions from C*(£2) need not be bounded in 2. If they are required to be
bounded together with their derivatives up to the order k, then the corre-
sponding set is denoted by C*(2).

For a continuous function f, defined on {2, we define the support of f as

suppf = {x € 2; f(z) # 0}.

The set of all functions with compact support in {2 which have continuous
derivatives of order smaller than or equal to k is denoted by C¥(£2). As above,
Co(92) := C§(£2) is the set of all continuous functions with compact support
in {2 and

Coo(2) == () CE(9).
k=0

Another important standard class of spaces are the spaces L,(£2),1 <p <
oo of functions integrable with power p. To define them, let us establish some
general notation and terminology. We begin with a measure space (2, X, u),
where (2 is a set, X' is a o-algebra of subsets of (2, and p is a o-additive
measure on Y. We say that p is o-finite if {2 is a countable union of sets of
finite measure.

In most applications in this book, 2 C R"™ and X is the o-algebra of
Lebesgue measurable sets. However, occasionally we need the family of Borel
sets which, by definition, is the smallest o-algebra which contains all open
sets. The measure p in the former case is called the Lebesgue measure and in
the latter the Borel measure. Such measures are o-finite.

A function f : 2 — R is said to be measurable (with respect to X, or with
respect to p) if f~1(B) € X for any Borel subset B of R. Because X is a



2.1 Spaces and Operators 11

o-algebra, f is measurable if (and only if) preimages of semi-infinite intervals
are in Y.

We identify two functions which differ from each other on a set of pu-
measure zero, therefore, when speaking of a function in the context of measure
spaces, we usually mean a class of equivalence of functions. For most applica-
tions the distinction between a function and a class of functions is irrelevant.
Sometimes, however, some care is necessary, as explained in Example 2.23 and
Subsection 2.1.8.

The space of equivalence classes of all measurable real functions on {2 is
denoted by L ({2, du) or simply Lo(S2).

The integral of a measurable function f with respect to measure p over a

set {2 is written as
[ fin= [ oy
1) Q

where the second version is used if there is a need to indicate the variable of
integration. If p is the Lebesgue measure, we abbreviate duyx = dx.

For 1 < p < oo the spaces L,({2) are defined as subspaces of Lo({2)
consisting of functions for which

1/p
1l = 11z = / FePdx | < oo 21)
0

The space L,({2) with the above norm is a Banach space. It is customary to
complete the scale of L, spaces by the space Lo, ({2) defined to be the space
of all Lebesgue measurable functions which are bounded almost everywhere
in {2, that is, bounded everywhere except possibly on a set of measure zero.
The corresponding norm is defined by

[flloe = [l () := Inf{M; p({x € £2; |f(x)| > M}) = 0}. (2.2)

The expression on the right-hand side of (2.2) is frequently referred to as the
essential supremum of f over {2 and denoted esssup,cq | f(x)].
If 1(2) < oo, then for 1 < p < p’ < co we have

Ly(2) € Ly(92) (2.3)

and for f € Lo (£2)
1o = Tim [ fllp, (2.4)

which justifies the notation. However,
) Lo(2) # Loc(92),
1<p<oo

as demonstrated by the function f(z) = Inz, z € (0,1]. If pu(§2) = oo, then
neither (2.3) nor (2.4) hold.
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Occasionally we need functions from Lo({2) which are L, only on compact
subsets of R™. Spaces of such functions are denoted by Ly jo({2). A function
f € L1 10c(£2) is called locally integrable (in (2).

Let 2 C R™ be an open set. It is clear that

Coo(£2) € Lp(22)

for 1 < p < oo. If p € [1,00), then we have even more: C5°(£2) is dense in
L,(£2); that is,

C5e(12) = Ly(92), (2.5)
where the closure is taken in the L,y-norm.

Example 2.1. Having in mind further applications, it is worthwhile to have
some understanding of the structure of this result; see [4, Lemma 2.18]. Let
us define the function

w(x) = {exp(lxlg_l) for |x| < 1, (2.6)

0 for |x| > 1.

This is a C§°(R™) function with support B;. Using this function we construct
the family

we(x) = Cew(x/€),
where C. are constants chosen so that [, we(x)dx = 1; these are also C§°(R™)
functions with support B, often referred to as mollifiers. Using them, we
define the regularisation (or mollification) of f by taking the convolution

fo(x) = / f(x — y)we(y)dy = / F(¥)we(x — y)dy. 27)
R Rn

Because the effective domain of integration in the second integral is By, f.
is well defined whenever f is locally integrable and, similarly, if the support
of f is bounded, then suppf. is also bounded and it is contained in the e-
neighbourhood of suppf. The functions f. are infinitely differentiable with

0210x) = [ 10 (x ~ y)dy (28)
Rn
for any (. It can be proved that if f € L,(R"), then f. € L,(R™) with
I fellp < N1l (2.9)
for any € > 0 and
f=1m fo inLy(R"). (2.10)

Because any function f € L,(R™) can be approximated by L,-functions with
supports in By, N — oo, by the previous considerations we obtain (2.5).
Moreover, if f is nonnegative, then f. are also nonnegative by (2.7) and hence
any non-negative f € L,(R™) can be approximated by nonnegative, infinitely
differentiable, functions with compact support.
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2.1.2 Operators

Let X,Y be real or complex Banach spaces with the norm denoted by || - || or
- .

An operator from X to Y is a linear rule A: D(A) — Y, where D(A) is a
linear subspace of X, called the domain of A. The set of operators from X to
Y is denoted by L(X,Y). Operators taking their values in the space of scalars
are called functionals. We use the notation (A4, D(A)) to denote the operator
A with domain D(A). If A € L(X, X), then we say that A (or (A, D(A))) is
an operator in X.

By L(X,Y), we denote the space of all bounded operators between X and
Y; L(X, X) is abbreviated as £(X). The space £(X,Y") can be made a Banach
space by introducing the norm of an operator X by

[All = sup [[Az| = sup |Azl]. (2.11)
Izl <1 Izl =1

If (A, D(A)) is an operator in X and Y C X, then the part of the operator A
in Y is defined as
Ayy = Ay (2.12)

on the domain
D(Ay)={z e D(A)NY; Az €Y}

A restriction of (A,D(A)) to D C D(A) is denoted by A|p. For A,B €
L(X,Y), we write A C B if D(A) C D(B) and B|pa) = A.

Two operators A, B € £(X) are said to commute if AB = BA. It is not
easy to extend this definition to unbounded operators due to the difficulties
with defining the domains of the composition. The extension is usually done to
the case when one of the operators is bounded. Thus, an operator A € L(X)
is said to commute with B € L(X) if

BAC AB. (2.13)

This means that for any x € D(A), Bx € D(A) and BAx = ABux.
We define the image of A by

ImA={yeY,; y= Az for some z € D(A)}
and the kernel of A by
KerA = {x € D(A); Az =0}.

We note a simple result which is frequently used throughout the book.

Proposition 2.2. Suppose that A, B € L(X,Y) satisfy: A C B, KerB = {0},
and ImA =Y. Then A= B.
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Proof. If D(A) # D(B), we take x € D(B) \ D(A) and let y = Bx. Because
A is onto, there is ' € D(A) such that y = Az’. Because 2’ € D(A) C D(B)
and A C B, we have y = Az’ = Bz' and Bz’ = Bz. Because KerB = {0},
we obtain x = 2/ which is a contradiction with = ¢ D(A). O

Furthermore, the graph of A is defined as
GA) ={(z,y) e X xXY; z € D(A),y = Ax}. (2.14)

We say that the operator A is closed if G(A) is a closed subspace of X x Y.
Equivalently, A is closed if and only if for any sequence (z,)neny C D(A), if
lim,, oo €, =  in X and lim,, oo Az, =y inY, then z € D(A) and y = Ax.

An operator A in X is closable if the closure of its graph G(A) is itself a
graph of an operator, that is, if (0,y) € G(A) implies y = 0. Equivalently, A is
closable if and only if for any sequence (z,)nen C D(A), if limy, 00 2, = 0 in
X and lim,, _,oo Az, =y in Y, then y = 0. In such a case the operator whose
graph is G(A) is called the closure of A and denoted by A.

By definition, when A is closable, then

D(A) = {z € X; thereis (¥n)nen C D(A) and y € X such that
|z — z|| — 0 and ||Az,, — y|| — 0},
Ax =y.

For any operator A, its domain D(A) is a normed space under the graph norm
[zl pay = [zl x + [[Az]ly (2.15)

The operator A : D(A) — Y is always bounded with respect to the graph
norm, and A is closed if and only if D(A) is a Banach space under (2.15).

Example 2.3. One of the simplest and most often used unbounded, but closed
or closable, operators is the operator of differentiation. If X is any of the
spaces C([0,1]) or L,([0,1]), then considering f,(z) := Cpz™, where C,, =1
in the former case and C,, = (np 4 1)'/? in the latter, we see that in all cases

|| fn]l = 1. However,
1 1/P
g2l = (25
np+1—p

in L,([0,1]) and || f,|| = n in C([0,1]), so that the operator of differentiation
is unbounded.

Let us define T'f = f’ as an unbounded operatoron D(T) = {f € X; Tf €
X}, where X is any of the above spaces. We can easily see that in X = C([0, 1])
the operator T is closed. Indeed, let us take (f,)nen such that lim, . fr = f
and lim,, o T f, = g in X. This means that (f,)nen and (f))nen converge
uniformly to, respectively, f and g, and from basic calculus f is differentiable
and f' =g.
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The picture changes, however, in L, spaces. To simplify the notation, we
take p = 1 and consider the sequence of functions

0 f0r0<x§%,
2
fn(z) = 5 x—%) for%<x§%+%,
x—%—% for§+%<x§1

These are differentiable functions and it is easy to see that (f,)nen converges
in L1([0,1]) to the function f given by f(x) = 0 for x € [0,1/2] and f(x) =
x—1/2 for x € (1/2,1] and the derivatives converge to g(z) = 0if x € [0,1/2]
and to g(z) = 1 otherwise. The function f, however, is not differentiable and
so T is not closed. On the other hand, g seems to be a good candidate for the
derivative of f in some more general sense. Let us develop this idea further.
First, we show that T is closable. Let (fn)nen and (f] )nen converge in X to
f and g, respectively. Then, for any ¢ € C5°((0,1)), we have, integrating by
parts,

[ ot = - / ful@)d! (2)dz

and because we can pass to the limit on both sides, we obtain

1

[o@swyiz = [ )6 (x)da. (2.16)

0

Using the equivalent characterization of closability, we put f = 0, so that

/ g(2)é(x)dz = 0
0

for any ¢ € C§°((0,1)) which yields g(z) = 0 almost everywhere on [0, 1].
Hence g = 0 in L;1([0,1]) and consequently 7" is closable.

The domain of T in L([0,1]) is the Sobolev space Wi ([0,1]) which is
discussed in more detail in Subsection 3.2.1.

These considerations can be extended to hold in any {2 C R". In particular,
we can use (2.16) to generalize the operation of differentiation in the following
way: we say that a function g € L1 j0.(£2) is the generalised (or distributional)
derivative of f € Ly 10c(§2) of order 3, denoted by 92 f, if

/ g(%)6(x)dx = (~1)!8 / F(x)026(x)dx (2.17)
(9] (9]

for any ¢ € C5°(£2). From the considerations above it is clear that 92 is a
closed operator extending the classical differentiation operator (from C171(£2)).
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One can also prove that 92 is the closure of the classical differentiation op-
erator. If {2 = R”, then this statement follows directly from (2.7) and (2.8).
Otherwise the proof is more complicated (see, e.g., [4, Theorem 3.16]).

In one-dimensional spaces the concept of the generalised derivative is
closely related to a classical notion of absolutely continuous function. Let
I = [a,b] C R! be a bounded interval. We say that f : I — C is abso-
lutely continuous if, for any ¢ > 0, there is 6 > 0 such that for any finite
collection {(a;,b;)}; of disjoint intervals in [a, b] satisfying ».(b; — a;) < 4,
we have ). |f(b;) — f(a;)| < e. The fundamental theorem of calculus, [150,
Theorem 8.18], states that any absolutely continuous function f is differen-
tiable almost everywhere, its derivative f’ is Lebesgue integrable on [a,b],
and f(t) — f(a) = fi f'(s)ds. It can be proved (e.g., [61, Theorem VIIL.2])
that absolutely continuous functions on [a, b] are exactly integrable functions
having integrable generalised derivatives and the generalised derivative of f
coincides with the classical derivative of f almost everywhere.

Later in the book we need absolutely continuous functions defined on the
positive half-line. In general, if the interval I is not closed or unbounded, we
say that f is absolutely continuous on I if it is absolutely continuous on each
compact subinterval of I, [12, p. 18].

We denote the space of absolutely continuous functions on I by AC(I).

2.1.3 Fundamental Theorems of Functional Analysis

The foundation of classical functional analysis are the four theorems which
we formulate and discuss below.

Hahn—Banach Theorem

Theorem 2.4. (Hahn-Banach) Let X be a normed space, Xo a linear sub-
space of X, and x7 a continuous linear functional defined on Xo. Then there
exists a continuous linear functional x* defined on X such that x*(x) = z7(x)
forxz € Xo and ||z*|| = ||z7].

The Hahn—Banach theorem has a multitude of applications. For us, the most
important one is in the theory of the dual space to X. The space L(X,R) (or
L(X,C)) of all continuous functionals is denoted by X* and referred to as the
dual space. The Hahn—Banach theorem implies that X™* is nonempty (as one
can easily construct a continuous linear functional on a one-dimensional space)
and, moreover, there are sufficiently many bounded functionals to separate
points of x; that is, for any two points x1,x2 € X there is * € X* such that
x*(x1) = 0 and z*(z2) = 1. The Banach space X** = (X*)* is called the
second dual. Every element € X can be identified with an element of X**

by the evaluation formula
z(x*) = x* (2); (2.18)
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that is, X can be viewed as a subspace of X**. To indicate that there is some
symmetry between X and its dual and second dual we shall often write

x*(x) =<z, x> xx X,

where the subscript X* x X is suppressed if no ambiguity is possible.

In general X # X**. Spaces for which X = X** are called reflezive. Exam-
ples of reflexive spaces are rendered by Hilbert and L, spaces with 1 < p < oo.
However, the spaces L1 and L., as well as nontrivial spaces of continuous
functions, fail to be reflexive.

Ezample 2.5.If 1 < p < oo, then the dual to L,(£2) can be identified with
L,(£2) where 1/p+1/q =1, and the duality pairing is given by

<frg>= / F)gx)dx, f € Ly(©2), g€ Ly(12). (2.19)
(]

This shows, in particular, that Lo (f2) is a Hilbert space and the above duality
pairing gives the scalar product in the real case. If L(f2) is considered over
the complex field, then in order to get a scalar product, (2.19) should be
modified by taking the complex adjoint of g.

Moreover, as mentioned above, the spaces L,(f2) with 1 < p < oo are
reflexive. On the other hand, if p = 1, then (L1(£2))* = L (£2) with duality
pairing given again by (2.19). However, the dual to Lo is much larger than
L1(£2) and thus L;(£2) is not a reflexive space.

Another important corollary of the Hahn—Banach theorem is that for each 0 #
x € X there is an element z* € X* that satisfies |z*|| = 1 and <z*, z>= ||z]|.
In general, the correspondence x — z* is multi-valued: this is the case in Li-
spaces and spaces of continuous functions it becomes, however, single-valued
if the unit ball in X is strictly convex (e.g., in Hilbert spaces or LP-spaces
with 1 < p < o0; see [82]).

Remark 2.6. In many textbooks the element §* = ||z||Z* is used instead of
z*. In this case, we have ||§*|| = ||z|| and <z*,z>= ||z||* = ||5*||*>. However,
because g* is a real positive scalar multiple of Z* for practically all applications
we can use either one.

Ezample 2.7. The existence of an element Z* satisfying <zZ*, z>= ||z|| has an
important consequence for the relation between X and X** in a nonreflexive
case. Let B, B*, B** denote the unit balls in X, X* X** respectively. Because
z* € X* is an operator over X, the definition of the operator norm gives

lz*||x+ = sup | <z*,z> | = sup <z*, x>, (2.20)
z€EB zEB

and similarly, for z € X considered as an element of X** according to (2.18),
we have
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|z]|x* = sup | <z ax>]|= sup <z*,x>. (2.21)
@+ €B* «*€B*

Thus, ||z]|x= < ||z||x. On the other hand,

|z||lx =<&*,2>< sup <z*,z>= ||| x*
r*eB*

and
[zllx = [z x- (2.22)

Hence, in particular, the identification given by (2.18) is an isometry and X
is a closed subspace of X™**.

The existence of a large number of functionals over X allows us to intro-
duce new types of convergence. Apart from the standard norm (or strong)
convergence where (x,,)nen C X converges to x if

lim ||z, —z|| =0,
n—oo

we define weak convergence by saying that (z,)nen weakly converges to x, if
for any z* € X*,

lim <x*, x,>=<x*, x> .
n—oo

In a similar manner, we say that (z}),eny C X* converges x-weakly to z* if,
for any z € X,

lim <z}, z>=<z*,z>.

n—oo
Remark 2.8. It is worthwhile to note that we have a concept of a weakly con-
vergent or weakly Cauchy sequence if the finite limit lim,, ., <z*,z,> exists
for any z* € X*. In general, in this case we do not have a limit element. If
every weakly convergent sequence converges weakly to an element of X, the
Banach space is said to be weakly sequentially complete. It can be proved that
reflexive spaces and L spaces are weakly sequentially complete. On the other
hand, no space containing a subspace isomorphic to the space ¢q (of sequences
that converge to 0) is weakly sequentially complete (see, e.g., [6]).

Remark 2.9. Weak convergence is indeed weaker than the convergence in
norm. However, we point out that a theorem proved by Mazur (e.g., see [172],
p. 120) says that if z,, — x weakly, then there is a sequence of convex combina-
tions of elements of (z,,),en that converges to  in norm. Thus, in particular,
the norm and the weak closure of a convex sets coincide.

Banach—Steinhaus Theorem

Another fundamental theorem of functional analysis is the Banach—Steinhaus
theorem, or the Uniform Boundedness Principle. To understand its impor-
tance, let us reflect for a moment on possible types of convergence of sequences
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of operators. Because the space £(X,Y") can be made a normed space by intro-
ducing the norm (2.11), the most natural concept of convergence of a sequence
(A,)neny would be with respect to this norm. Such a convergence is referred
to as the uniform operator convergence. However, for many purposes this no-
tion is too strong and we work with the pointwise or strong convergence: the
sequence (A, )nen is said to converge strongly if, for each x € X, the sequence
(A, ) nen converges in the norm of Y. In the same way we define uniform and
strong boundedness of a subset of £(X,Y).

Note that if Y = R (or C), then strong convergence coincides with x-weak
convergence.

After these preliminaries we can formulate the Banach—Steinhaus theorem.

Theorem 2.10. Assume that X is a Banach space andY is a normed space.
Then a subset of L(X,Y) is uniformly bounded if and only if it is strongly
bounded.

One of the most important consequences of the Banach—Steinhaus theorem is
that a strongly converging sequence of bounded operators is always converging
to a linear bounded operator. That is, if for each x there is ¥, such that

lim A,z = yq,
n—oo

then there is A € L(X,Y) satisfying Az = y,..

Example 2.11. We can use the above result to get a better understanding of
the concept of weak convergence and, in particular, to clarify the relation be-
tween reflexive and weakly sequentially complete spaces. First, by considering
elements of X* as operators in £(X, C), we see that every x-weakly converg-
ing sequence of functionals converges to an element of X* in x-weak topology.
On the other hand, for a weakly converging sequence (x,)nen C X, such an
approach requires that x,,n € N, be identified with elements of X** and thus,
by the Banach—Steinhaus theorem, a weakly converging sequence always has
a limit x € X**. If X is reflexive, then x € X and X is weakly sequentially
complete. However, for nonreflexive X we might have z € X**\ X and then
(zn)nen does not converge weakly to any element of X.

On the other hand, (2.22) implies that a weakly convergent sequence is
norm bounded.

We note another important corollary of the Banach—Steinhaus theorem which
we use in the sequel.

Corollary 2.12. A sequence of operators (An)nen is strongly convergent if
and only if it is convergent uniformly on compact sets.

Proof. It is enough to consider convergence to 0. If (A4,)nen converges
strongly, then by the Banach—Steinhaus theorem, a = sup,,cy || A, || < +o0.
Next, if 2 C X is compact, then for any ¢ we can find a finite set N, =
{z1,..., 2} such that for any x € (2 there is x; € N, with ||z — z;]| < €/2a.
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Because N, is finite, we can find ng such that for all n >ngand i =1,...,k
we have |A,z;|| < ¢/2 and hence

[Anz| = [[Anzill + allz — z4f| < €
for any = € 2. The converse statement is obvious. 0O

We conclude this unit by presenting a frequently used result related to the
Banach—Steinhaus theorem.

Proposition 2.13. Let X, Y be Banach spaces and (Ap)nen C L(X,Y) be a
sequence of operators satisfying sup,cy ||An|| < M for some M > 0. If there
is a dense subset D C X such that (A,x)nen is a Cauchy sequence for any
x € D, then (A,x)nen converges for any x € X to some A € L(X,Y).

Proof. Let us fix € > 0 and y € X. For this e we find x € D with ||z—y| < ¢/M
and for this « we find ngy such that |4,z — Apx|| < € for all n,m > ng. Thus,

[Any = Amyll < [Anz — Apz]| + [|An(z = y)[[ + [[Am(z — y)[| < 3e.

Hence, (Any)nen is a Cauchy sequence for any y € X and, because Y is
a Banach space, it converges and an application of the Banach—Steinhaus
theorem ends the proof. 0O

The Closed Graph Theorem

It is easy to see that a bounded operator defined on the whole Banach space X
is closed. That the inverse also is true follows from the Closed Graph Theorem.

Theorem 2.14. Let X, Y be Banach spaces. An operator A € L(X,Y) with
D(A) = X is bounded if and only if its graph is closed.

We can rephrase this result by saying that an everywhere defined closed op-
erator in a Banach space must be bounded.

To give a nice and useful example of an application of the Closed Graph
Theorem, we discuss a frequently used notion of relatively bounded operators.
Let two operators (A, D(A)) and (B, D(B)) be given. We say that B is A-
bounded if D(A) C D(B) and there exist constants a,b > 0 such that for any
x € D(A),

|Bal < al| Az + bl (2.23)

Note that the right-hand side defines a norm on the space D(A), which is
equivalent to the graph norm (2.15).

Corollary 2.15. If A is closed and B closable, then D(A) C D(B) implies
that B is A-bounded.
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Proof. If A is a closed operator, then D(A) equipped with the graph norm is
a Banach space. If we assume that D(A) C D(B) and (B, D(B)) is closable,
then D(A) C D(B). Because the graph norm on D(A) is stronger than the
norm induced from X, the operator B, considered as an operator from D(A)
to X is everywhere defined and closed. On the other hand, B] pa) = B;
hence B : D(A) — X is bounded by the Closed Graph Theorem and thus B

is A-bounded. O

The Open Mapping Theorem

The Open Mapping Theorem is fundamental for inverting linear operators.
Let us recall that an operator A : X — Y is called surjective if ImA =Y and
open if the set Af2 is open for any open set {2 C X.

Theorem 2.16. Let X, Y be Banach spaces. Any surjective A € L(X,Y) is
an open mapping.

One of the most often used consequences of this theorem is the Bounded
Inverse Theorem.

Corollary 2.17. If A € L(X,Y) is such that KerA = {0} and ImA =Y,
then A=t € L(Y, X).

The corollary follows as the assumptions on the kernel and the image ensure
the existence of a linear operator A~! defined on the whole Y. The operator
A1 is continuous by the Open Mapping Theorem, as the preimage of any
open set in X through A~!, that is, the image of this set through A, is open.

Throughout the book we are faced with invertibility of unbounded opera-
tors. An operator (A4, D(A)) is said to be invertible if there is a bounded oper-
ator A~! € L(Y, X) such that A=' Az = z for all x € D(A) and A~ 'y € D(A)
with AA~!y = y for any y € Y. We have the following useful conditions for
invertibility of A.

Proposition 2.18. Let X, Y be Banach spaces and A € L(X,Y). The follow-
ing assertions are equivalent.

(i) A is invertible;

(i1) ImA =Y and there is m > 0 such that ||Az|| > m|z|| for all x € D(A);

(111) A is closed, ImA =Y and there is m > 0 such that |Az| > m||z| for
all z € D(A);

(iv) A is closed, ImA =Y, and KerA = {0}.

Proof. The equivalence of (i) and (ii) follows directly from the definition of
invertibility. By Theorem 2.14, the graph of any bounded operator is closed
and because the graph of the inverse is given by

G(A) = {(z,y); (y,x) € G(A™H)},
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we see that the graph of any invertible operator is closed and thus any such
an operator is closed. Hence, (i) and (ii) imply (iii) and (iv). Assume now
that (iii) holds. G(A) is a closed subspace of X x Y, therefore it is a Banach
space itself. The inequality ||Ax| > m/||z| implies that the mapping G(A) >
(x,Az) — Az € ImA is an isomorphism onto ImA and hence I'mA is also
closed. Thus ImA =Y and (ii) follows. Finally, if (iv) holds, then Corollary
2.17 can be applied to A from D(A) (with the graph norm) to Y to show that
A7t e L(Y,D(A)) c L(V,X). DO

2.1.4 Adjoint Operators

An important role in functional analysis is played by the operation of taking
operator adjoint. If A € L(X,Y), then the adjoint operator A* is defined as

<y*, Ar>=<A%y* > (2.24)

and it can be proved that it belongs to £L(Y™*, X*) with ||A*|| = ||A]|. If A is
an unbounded operator, then the situation is more complicated. In general,
A* may not exist as a single-valued operator. In other words, there may be
many operators B satisfying

<y*, Ax>=<By*, x>, x € D(A), y* € D(B). (2.25)

Operators A and B satisfying (2.25) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator
A* adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B C A*. This A* is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A*) consists of all
elements y* of Y* for which there exists f* € X* with the property

<y*, Ax>=<f* x> (2.26)

for any x € D(A). Because D(A) is dense, such element f* can be proved
to be unique and therefore we can define A*y* = f*. Moreover, the assump-
tion D(A) = X ensures that A* is a closed operator though not necessarily
densely defined. In reflexive spaces the situation is better: if both X and Y
are reflexive, then A* is closed and densely defined with

A= (A% (2.27)
see [105, Theorems I11.5.28, T11.5.29].

Example 2.19. Let us consider the closure of the operator of differentiation in
L,([0,1]), 1 < p < o0, discussed in Example 2.1. We again denote this closure
by T; that is, T'f = f’ with the domain D(T) = {f € AC(I); f' € L,([0,1])}.
Because T is clearly densely defined, there exists the adjoint operator T*. By
direct integration we find that T and the operator S, defined by Sg = —¢'
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on D(S) = {g € AC(I); ¢’ € Lg([0,1]),9(0) = g(1) = 0}, 1/p+1/g =1, are
adjoint to each other. We show that T* = S. To this end let g € D(T*) and
put f = T*g. Then, for any u € D(T) we obtain

1 1
/f z)de = <T*g,u>=<g,Tu>= /g(a:)u’(m)dx. (2.28)
0 0

Define h(x fo s)ds so that h'(x) = f(x) and h(0) = 0. Then, integrating

by parts,
1

/h = u(1)h(1) — jf(x)u(x)dx
0 0

and adding to (2.28), we obtain

1

/(g(x) + h(z))u'(z)dz — u(1)h(1) = 0. (2.29)

Because for any v € L,([0,1]) there is u € D(T) such that ' = v and
u(1) = 0, we see that g+h annihilate L,([0,1]) and thus g+h = 0. Then (2.29)
gives u(1)h(1) = 0. Because there are u € D(T') with u(1) # 0, we obtain
h(1) = 0. Hence g = —h is absolutely continuous with ¢’ = —h’ € L,([0,1])
and ¢g(0) = ¢g(1) = 0 so that g € D(S) and T*g = Sg. Because we noted at
the beginning that S C T%, we have S =T™*.

2.1.5 Vector-valued Functions and Bochner Integral

We make extensive use of functions which depend on a scalar argument and
which take values in a Banach space X. Classical notions of continuity, differ-
entiability, or analyticity can be used in this setting, the only difference being
that the convergence of the functions’ values is taken in the norm of X.

If I = [a,b] is an interval and f : I — X is a continuous and vector-
valued function, then the notion of the Riemann integral is also defined as
in the scalar case. For such integrals it is easy to show that if A is a closed
operator and f(t) is a D(A)-valued function such that both f(t) and Af(¢)
are continuous in X, then

b b
/ Af(t)dt = A / F(t)dt. (2.30)

If the Banach space in question is the space of bounded linear operators
L(X,Y), then all the above can be interpreted either in a strong or uniform
sense, as discussed before the Banach—Steinhaus theorem. In most cases we
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work with strong continuity, differentiability, and the like. Thus, for instance,
a function F : I — L(X,Y) is said to be strongly continuous on I if, for any
x € X, the function F(-)z is continuous.

If F,G: I — L(X) are two operator-valued functions, then one can define
their composition FG : I — L(X) by

FG(t)x = F(t)(G(t)x), re X, tel

The following result gives some properties of such a composition.

Proposition 2.20. Let I be a real interval and F,G : I — L(X) be two
strongly continuous functions.

(i) The product FG : I — L(X) is strongly continuous.

(i1) If, in addition, F(-)x and G(-)x are differentiable for x € D, where D is
a subspace of X that is invariant under G(t) for any t € I, then FG(-)x
is differentiable for any x € D and

) . (2.31)
t=to

The proofs of both results are straightforward (see, e.g., [79, Lemmas B.15—
16]).

Let F: T — L(X,Y) be a strongly continuous function. By the Banach—
Steinhaus theorem, ¢t — ||F(¢)|| is locally bounded. Moreover, because

4 PG - & PO (t0)2)e=ty + Flto) (jtcw)x

IF@) = sup [[F(t)z]],

llzll<1

t — ||F(t)]] is lower semicontinuous and hence measurable.

In many situations continuous functions and the Riemann integral will
be too restrictive and we will have to extend the notion of the Lebesgue
integral to vector-valued functions. The most commonly used generalization
of the Lebesgue integral is offered by the Bochner integral which is now briefly
discussed (see [172, pp. 130-136], [100, pp. 58-92], or [12, pp. 5-15]).

The starting point in the definition of the Lebesgue integral is the notion of
measurability of a function. The standard definition used in the real function
theory cannot be used here and is replaced by the following construction
carried out, for the sake of generality, in R™.

Let A C R™ be a measurable set with respect to the Lebesgue measure p
and let {Aq,..., A} be a finite collection of mutually disjoint, measurable
subsets of A with finite measures p(A4A,,); furthermore, let X be a Banach
space and {1, ..., Ty} be a collection of points of X. The function f : A — X
defined by

F&) = wexa,(b), (2.32)
k=1
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where xa, is the characteristic function of Ay (that is, xa, = 1 on Ay and
Xa, = 0 otherwise), is called a simple function. A function g defined almost
everywhere on A is called (Bochner) measurable on A if there exists a sequence
(fn)nen of simple functions such that

i [|fa(t) = F(5)] = 0

almost everywhere on A. It can be shown that if the range of f is separable,
then f is measurable if and only if the scalar function t —< f(t),z* > is
measurable for every z* € X* (see, e.g., [12, Theorem 1.1.1]).

Proofs of the following properties can be found in [12, Corollary 1.1.2] and
[100, pp. 72-73].

Proposition 2.21. (a) Any continuous function f: A — X is measurable;

(b) If (fu)nen is a sequence of measurable functions from A to X converging
in norm almost everywhere in A to f, then f is also measurable;

(c) If f : A — X is measurable and F : A — L(X,Y) is strongly continuous,
then t — F(t)f(t) is measurable.

If f is a simple function (2.32), then we define its integral by
[ e = S o).
k=1
A

If for a given function f we can choose a sequence of simple functions ( f,,)nen
in such a way that
Tim [ 1406 — £(&)de =0, (233)
A

then we say that f is (Bochner) integrable on A and define the integral by

/f(t)dt = lim [ fu(t)dt.

n—oo

A A

This definition is independent of the choice of the sequence (f,)nen-
A great advantage of this definition is that the class of Bochner measurable
functions can easily be characterized.

Theorem 2.22. A function f: A — X is Bochner integrable if and only if it
is measurable; || f|| is Lebesgue integrable on A. Moreover,

fe)de| < [ lIf(t)]dt.
[rom=]
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Proof. If f is Bochner integrable, then there is a sequence (f,)nen of simple
functions converging a.e. to f and f is thus measurable. Moreover, for a simple
function g = >, xa,z; we have [|g|| = >, xa,|lzi|| as for each t € A at
most one term of the sum is non-zero. Thus, for each n, ||f,| is a simple
scalar function and, as || f,|| — ||f]|, we see that ||f|| is also measurable. The
integrability of || f|| follows from

/ | F(e)lldt < / a6t + / 1£(8) = fult)]ldt,
A A A

where the right-hand side is finite for any n from the definitions of the Bochner
integral and of the integral of a simple function (recall that the subsets in the
definition of the simple function have, by definition, finite measure). Moreover

[rwae] = nn | [ fawae] < i [sa@1ae = [ 150
A A A A

where, because || f,,(t)|| are simple functions converging to || f||, the last equal-
ity follows from the definition of the Lebesgue integral.

Let us assume now that f is Bochner measurable and | f]| is integrable.
Thus, in particular, f is finite almost everywhere. By definition there is a
sequence (fp)nen of simple functions converging to f pointwise on A\ A’
with u(A’) =0, where f is finite. We define a new sequence by

o) = {20 15,01 € A+ @IFO1 5y

0 otherwise,

where a is a positive constant. We note that these are still simple functions
as the only possible new value taken by g, is 0. Moreover, because both || f,.|]
and || f|| are measurable, the above modification occurs on measurable sets.
Then ||, (t)]] < ||f(®)|I(1 + a) and because for each t € A\ A’ and for each
€ there is ng such that || f,(t)|] < ||f(t)|| + € for all n > ng, we see that for
each t € A\ A’ there is ng such that g,(t) = f,(t) for n > ny and hence
lim oo 19 (£) — F(£)] = 0 on A\ A'. Because [|f(£) — ga (6)] < (2-+a) | £(8)]
and || f]] is integrable, we see that || f — g, || is also integrable and we can apply
the scalar dominated convergence theorem to claim that

lim | [lga(t) — £(t)]|dt = 0.

n—oo

A
O
Using this theorem one can prove that for Bochner integrable functions

both the Fubini theorem and the Lebesgue dominated convergence theorem
are valid.
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The space of Bochner integrable functions f : A — X is denoted by
Li(A, X). It can be proved that, equipped with the norm

|mm:/wmwm
A

it is a Banach space. In the same way we can define spaces L,(A,X),1 <p <
oo, of Bochner measurable functions which have finite norm

1/p
1l = /wmwa :
A

these are also Banach spaces. By replacing || f|| by || f||? in (2.34) and following
the rest of the proof we see that simple functions are also dense in L, (A, X).

Ezxample 2.23. In this example we address several questions arising when the
Banach space X in the definition of the Bochner integral is a space L,(£2),
1 < p<oo,2CR™ and, in particular, what relationship there is between
L,(A,Ly($2)) and L,(A x £2). To explain the problem arising here, let p =
1. We note that by the Fubini theorem, any function f € Li(A x 2) is
integrable over {2 for almost all t € A and can thus be treated as an element
of L1 (A, L1(£2)). On the other hand, L1 (A, L1(§2)) really is a space of classes
of equivalence of classes of equivalence. Thus, to find a representation of f
as a function of (t,s) € A x {2, we first select a Bochner measurable f(-) on
A and then, for each t € A, we select f(t,-) which is measurable on (2. It is
not clear a priori whether such a procedure leads to (t,s) — f(t,s) which is
measurable on A x 2, that is, whether there is f measurable on A x {2 such
that, for almost all (t,s) € A x {2,

[F(®)](s) = f(t;s), (2.35)

where, for a given t € A, [f(t)](-) is a representation of f(t) € L1(2).

If f is a measurable function on {2 and x4 is a characteristic function of
a measurable A C A, then yaf is measurable on A x (2. Thus, any simple
function is also measurable on A x (2.

First, let pu(2) < 400 and f € Li(A,Ly(£2)). By (2.3) we have also
f € Li(A,L1(£2)). Denote by (fn)nen a sequence of simple functions ap-
proximating f in (2.33) and let f,(t,s) be a representation of f,, which is
measurable on A x §2. Then, by the Fubini theorem we obtain

n,m—oo

A

tin [ 156 = fu®lldt = [ [ 152(6:5) = fn(t.)ldsde =0
A 2

and hence (f,)nen is a Cauchy sequence in Li(A x £2). Let f € L1(A x £2)
be its limit. Using Fubini’s theorem again, we see that for almost any t € A,
ft,) € L1(£2) so f € L1(A, L1(£2)). Thus, we can write



28 2 Basic Facts from Functional Analysis and Banach Lattices

176 - Feylae < / 1£6) = fu(@lde + [ [ 1t~ Fe.s)ldsdt,
A

A 2

and, passing to the limit as n — oo, we obtain f(t) = f(t,-) for almost any
t € A and thus f is a measurable representation of f on A x §2; that is, we can
write [f(t)](s) = f(t,s) for almost every (t,s). Moreover, from the definition
of f, we have, again by the Fubini theorem

H/fn dt—/f St <//|fnts F(t, s)|dtds
//|fnts f(t,s)|dsdt — 0,

/f(t)dt (s):/f‘(t,s)dt (2.36)
A

for almost all s € 2, where the integral on the left-hand side is the Bochner
integral and on the right-hand side we have the scalar Lebesgue integral.

If u(£2) = oo, then we consider the sequence Fy(t) = xqonf(t), where
n = ByN{2, where By is the ball with radius N in R™. Now, to approximate
Fn we can take the sequence (x By fn)nen and using the same representation
of (fn)nen for each N, we see that the corresponding representations fy of
Fy satisfy fn(t,s) = far(t,s)|axoy for M > N almost everywhere. Because
w is o-finite, (fn)nen converges almost everywhere on A x £2 to a measurable
representation of f on A x (2. We establish the validity of (2.36) in this case
in a similar way.

Thus, for any f € Li(A, L,(£2)) there is a measurable representation f
on A x §2, which clearly satisfies f(t,) € L,(£2) for almost any t € A.
In particular, the identification (2.35) establishes an isometric isomorphism
between L1 (A, L1(£2)) and L1(A x 2) and in what follows we consider these
two spaces to be identical, that is,

as n — 00; hence

Simple functions are dense in L, (A, L,(£2)) for p € [1,00), therefore we can
repeat all the above considerations to show that for this range of p we also
have

Ly(A,Ly(2)) = L(A x 2) (2.35)
(up to the isometry (2.35)).

Due to the fact that the definition of the integral involves only linear oper-
ations and passing to the limit, the Bochner integral commutes with bounded
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linear operators: for any A € £(X,Y) and Bochner integrable function f, Af
is Bochner integrable and

Al fydt = | Af(t)dt. (2.39)
[ren-]

Moreover, (2.39) also holds if (A, D(A)) is a closed operator, an integrable
function f : A — X satisfies f(t) € D(A) for almost any t € A, and t —
Af(t) is Bochner integrable (see, e.g., [12, Proposition 1.1.7]).

2.1.6 The Laplace Integral

In this section we work with A =R, (sot =t), p = 1, and a complex Banach
space X. Similarly, as in the scalar case, we define Lj joc(R4, X) as the set
of all functions f that are Bochner integrable on [0, a] for every a € R,. Tt
should be noted that if f € L1(R4, X), then by the dominated convergence
theorem, we have

/f(t)dt = lim /f(t)dt.
0 B
However, the limit on the right-hand side may exist without f being Bochner
integrable on R.
Let f € Ly joc(R4, X). For A € C we consider the Laplace integral

a

Lf(A\) = lim / e M f(t)dt. (2.40)

a— 00

0

We define the abscissa of convergence of f by
abs(f) = inf{RX; Lf()\) exists}. (2.41)

It follows, [12, Proposition 1.4.1], that the Laplace integral Lf(\) converges
if R\ > abs(f) and diverges if RA < abs(f). We say that abs(f) = —oc if
the Laplace integral exists for any A\ € C, and abs(f) = oo if the domain of
convergence is empty.

Let abs(f) < +o0. The function

A= LF),  RA> abs(f)

is called the Laplace transform of f. It is an analytic function of A, [12, The-
orem 1.5.1].
We define the exponential growth bound of f by

w(f) = inf{w € R; sup |le”“! f(t)| < oo}. (2.42)
>0
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It is clear that abs(f) < w( f) but in general the inequality here is strict.
Indeed, the function f(t) = ele® cos( ) has the property that w(f) = oo,
however abs(f) = 0; see [12, Example 1.4.4].

An important role is played by the uniqueness of the Laplace transform.
We have, [12, Theorem 1.7.3]:

Theorem 2.24. Let f,g € L j0c(R4+, X) with abs(f), abs(g) < +oo and let
Ao > max{abs(f),abs(g)}. If LF(N) = Lg(\) whenever A > Ao, then f(t) =
g(t) for almost all t € R,..

The operational properties of the vector-valued Laplace transform parallel
those of the scalar case. However, for further reference, we note some of them
in detail. For the proofs we refer the reader to [12, pp. 37-39].

Proposition 2.25. Let f € Ly j,.(R4+, X).

(o) If T € L(X,Y), then (T o f) € L1,10c(Ry,Y); moreover, if Lf(N) exists
for some X € C, then (L(T o f))(\) exists and (L(T o f))(A) =T (Lf(N)).

(b) Suppose that A is a closed operator on X, f(t) € D(A) for almost all t
and Ao f € L1 joc(Ry, X). If Lf(N) and (L(Ao f))(N) both exist for some
AeC, then £f( )€ D(A) and (L(Ao f))(N) = A(Lf(N).

(c) Let F(t fo s)ds. If RA > 0 and Lf(N) exists, then LF(X) exists and
LR 2 A

Inversion of the Laplace transform is of paramount importance in applications
but the general theory, especially for Banach space valued functions, is quite
involved and is usually stated in terms of the Laplace—Stieltjes rather than the
standard Laplace transform. We need a rather crude version of the inversion
formula so we do not enter into details here. However, we have to introduce
some preliminary notions. If w(f) < 400, then by considering functions ¢ —
e @ f(t) for some w > w(f) we can conﬁne our attention to functions f
satisfying f € Lo (Ry). In such cases, F(t fo s)ds is globally Lipschitz
continuous on Ry and the above—mentloned Laplace— Stleltjes transform of F’
coincides with Lf.

Remark 2.26. In the scalar case, any Lipschitz continuous function is abso-
lutely continuous and any absolutely continuous function is differentiable al-
most everywhere and representable as an indefinite integral of its derivative;
see Example 2.3. This is no longer true in a general Banach space X. It can be
proved, [12, Proposition 1.2.4], that differentiability a.e. of Lipschitz contin-
uous and absolutely continuous X-valued functions are equivalent properties
of the underlying Banach space X and such an X is said to have the Radon—
Nikodym property. It is known, [12, pp. 20-21], that reflexive spaces have the
Radon—Nikodym property, whereas ¢y and L; spaces have not.

Coming back to inversion of the Laplace transform, we have the following
result which is a simplified version of [12, Theorem 2.3.4].
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Theorem 2.27. If f € Loo(R4) and F(t) = fotf(s)ds, then

c+ik

AL nD

F(t) = lim — a
(t) = lim o= P
c—ik

(2.43)

where the limit is uniform for t € [0,a] for any a > 0 and ¢ > 0 is arbitrary.

We note that if £f is absolutely integrable along an imaginary line w + ioco
with w > w(f), then the derivative of the integrand with respect to ¢ > 0
is Bochner integrable. Thus, by differentiating (2.43) with respect to ¢ and
shifting the result by w, we obtain

w+ik
f(t) = Jim % / (LN (2.44)
w—ik

Due to their importance in the theory of semigroups, strongly continuous
operator-valued functions deserve special attention. Let F : Ry — L(X,Y)
be such a function. The exponential growth bound of F is defined as in (2.42)
with the norm taken to be the operator norm of F(t).

The convergence of the Laplace integral (2.40) for a strongly continuous
function F' is understood in the strong, that is, pointwise sense, as

a

LF\)z = lim [ e MF(t)xdt, (2.45)

0

for any x € X. As ¢ — ['e M F(t)zdt is a bounded operator for any A € C
and any a, the transform LF()), if exists, is also a bounded operator by the
Banach—Steinhaus theorem. The abscissa of convergence is defined, respec-
tively, as

abs(F) = inf{RX\; /e_MF(t)dt converges strongly as a — oo}
0
= sup{abs(Fy); z € X}, (2.46)

where F,(t) = F(t)x. As before, abs(F) < w(F).
The notion of convolution and its Laplace transform are extremely impor-
tant in applications. We have the following result, [12, Proposition 1.3.4].

Proposition 2.28. Let f € Ly 0.(R4+,X) and let F : Ry — L(X,Y) be a
strongly continuous function. Then the convolution

(Fx f)(t) := /F(t —8)f(s)ds (2.47)
0
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exists (as the Bochner integral) and is a continuous function from Ry to Y.
Moreover, if 1 < p,q,r < oo satisfy 1/p+1/q = 1+1/r, fOOOHF(t)det < 00,
and f € LI(Ry, X), then Fxf € L"(Ry,Y) and the Young inequality is valid:

1/p

1E s+ fllr < 11 £llq /HF(t)Ilpdt : (2.48)
0

Remark 2.29. The convolution defined by (2.47) is a particular case, for func-
tions with support in R, of the convolution over the whole real line. The
Young inequality also holds in the latter, more general, case.

We prove the following result on the Laplace transform of the convolution
as it is be used in the sequel and the given formulation is not easy to find in
the literature.

Proposition 2.30. Assume that F' : Ry — L(X) is a strongly continuous
function with the exponential bound w(F) < oo and f satisfies e”“'f(t) €
Li(R4, X) for any w > w(F'). Then w(F * f) <w(F) and

L(F+ F)N) = LENLFDN), A > w(F). (2.49)

Proof. First, note that using Young’s inequality for r,p = oo, ¢ = 1, and
w > w(F'), we obtain

sup [le”“ (F x f)(1)]| < sup[le™ F(#)]l[le™" f[| < oo,
t>0 >0

so that the first claim is proved. Consider next the function (¢, s) — F(t)f(s)
on Ry x Ry. If f(s) = xiz(s)x, where x; is a characteristic function of a
measurable subset I of R} and x € X, then

F(t)f(s) = x1(s)F(t)x

is obviously measurable as a product of the continuous function F'(t)x and
a scalar measurable function. By linearity, F' o f is measurable if f is a sim-
ple function. If f is measurable, then there is a sequence (f,)nen of simple
functions converging to f for almost every s in the norm of X and we can
obviously pass to the limit using boundedness of F(t) for each ¢. Then, with
w>w(F)+¢€, e >0 we see that

lemte= F(#) f(s)]| < e~ e~ @ P )lle™ £(s)]| < Ce™ e f(s)]

so that (t,s) — e “(T9)F(t)f(s) is integrable on R, x R, . Hence, the fol-
lowing calculations are correct for A > w(F).
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E(F*f)()\):/ e—M/F(t—s)f(s)ds dt

oo/ o0 [e oy e el

:/ /e"\(t_s)F(t—s)(e‘“’f(s))dt ds:/ /e_’\TF(T)(e_ASf(s))dT ds
0

0

0 s
- / LFO) (e f(s))ds = LF(NLI(N),
0

where we used the fact that the Laplace transform of a strongly continuous
function is a bounded linear operator on X for any A for which it is defined,
and Proposition 2.25(a). O

2.1.7 Vector-valued Analytic Functions and Resolvents

It is worthwhile to spend some time on analytic functions with values in a
Banach space X. If (a,,)nen is a sequence of elements of X, we can consider
the formal power series

S = Z ()\ — AO)"an, A A € (C,
n=0
and define the radius of convergence of the series S by

(2.50)

1
R=—
limsup {/||an|]
n— oo

where we adhere to the convention oo = 1/0 and 0 = 1/cc. As in the scalar
case, the convergence of S is determined by the Hadamard criterion: S con-
verges uniformly in norm on every compact set contained in the open disk
D(Xo, R) = {A € C; |A=Xo| < R}, S does not converge whenever |A—Xo| > R
and may or may not converge on the circle |\ — Ag| = R. An interesting con-
sequence of the Banach—Steinhaus theorem is the following lemma which is
useful later on, see Theorem 2.93.

Lemma 2.31. Assume that (Ap)nen is a sequence of bounded operators and
there is R > 0 such that for any z* € X* and x € X the series
o0
R" <x*, Apz> (2.51)
n=0

converges. Then the series
> 2" An (2.52)
n=0

converges in the uniform topology at least for |z| < R.
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Proof. By redefining the operators according to AX = R"A,,, we see that it is
enough to prove the theorem for R = 1. The convergence of the numerical se-
ries (2.51) requires the sequence (A, z)nen to be weakly bounded (even weakly
convergent to 0) but this implies the norm boundedness of this sequence (by
identifying A,z with elements of X** and using the Banach—Steinhaus theo-
rem together with (2.22)). Then, again using the Banach—Steinhaus theorem
we get the boundedness of (A, )nen in the uniform operator topology. Hence,
the Hadamard criterion ensures that the radius convergence of (2.52) is at
least R. O

Analytic functions taking values in a Banach space are defined, as in the
scalar case, by being differentiable with respect to the complex variable. How-
ever, we can also define weak analyticity of f in the following way: we say
that C D U 2 A — f(A) € X is weakly analytic if for any 2* € X* the scalar
function <z*, f(A)> is analytic. An important fact is that weakly analytic
functions are precisely analytic functions (see, e.g., [100, Theorem 3.10.1]).
Thus, it is not surprising that most properties of scalar analytic functions
carry over to the vector-valued case.

Let A be any operator in X. The resolvent set of A is defined as

p(A)={\eC; X[ — A: D(A) — X is invertible}. (2.53)

We call (A — A)~! the resolvent of A and denote it by R(\, A) = (A — A)~1,
A € p(A). The complement of p(A) in C is called the spectrum of A and
denoted by o(A). In general, it is possible that either p(A4) or o(A) is empty.
The spectrum is usually subdivided into three subsets.

o Point spectrum o,(A) is the set of A € o(A) for which the operator A\I — A
is not one-to-one. In other words, o,(A) is the set of all eigenvalues of A.

o Continuous spectrum o.(A) is the set of A € o(A) for which the operator
Al — A is one-to-one and its range is dense in X but not equal to X.

e Residual spectrum o.(A) is the set of A € o(A) for which the operator
Al — A is one-to-one and its range is not dense in X.

Remark 2.82. In this definition the sets o,(A4),0.(A),0,(A4) form a disjoint
partition of o(A). In some recent works on semigroup theory (see e.g. [79, 12])
the requirement that the operator AI — A is one-to-one for A € o.(A)Uo,.(A)
is dropped, paving the way to define another subset of a spectrum, called the
approximate spectrum, which consists of all A\ € o(A) for which A\ — A is
either not one-to-one or its range is not closed in X. Approximate spectrum
plays an important role in the theory of asymptotic behaviour of semigroups
but because these topics are outside the scope of this book, we stick to the
classical definitions of the partition of the spectrum.

In the following considerations, either p(A) = @, in which case the given
results are void, or p(A) # 0 whereupon R(A, A) is a bounded operator for
A € p(A) and, consequently, A is closed.
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The resolvent of any operator A satisfies the resolvent identity

from which it follows, in particular, that R(\, A) and R(u, A) commute. It
follows that p(A) is an open set and R(A, A) is an analytic function of A € p(A)
which can be written as the power series

(1= N)"R(p, A" (2.55)

NgE

R(\A) =

n=0

for | — Al < ||[R(i, A)|| ! so that the iterates of the resolvent and its deriva-
tives are related by
d'"/
dan

R\ A) = (=1)™nIR(\, A)" T (2.56)

For any bounded operator the spectrum is a compact subset of C so that
p(A) # 0. If A is bounded, then the limit

r(A) = lim /A" (2.57)

n— o0

exists and is called the spectral radius. Clearly, r(A) < ||A||. We have the
following theorem.

Theorem 2.33. The spectral radius of A has the following properties.
(i) We have
R\ A) = S A~ FD g (2.58)
n=0
where the series converges in the operator norm for |A| > r(A).
(ii) For |A\| < r(A) the series in (2.58) diverges (in the operator norm).
(1i3)
r(A) = sup [A|. (2.59)
Aeo(A)

Remark 2.34. Equation (2.58) with A\ = 1:
(I-A4)~"=> A", (2.60)
n=0

is referred to as the Neumann series and is one of the basic results in applied
functional analysis giving an explicit representation of the solution to

r— Az =f

with ||A|| < 1 (or, more precisely, with r(A) < 1). Thus, it is a linear coun-
terpart of the Banach contraction principle.
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Theorem 2.35. If A, — A\, A\, € p(A), and {||R(An, A)||}nen is bounded,
then A € p(A).

Proof. It ||R(A\n, A)|| < M for all n, then by (2.55) we see that each A\, is
a centre of a disc | — A,| < 1/M, where the series converges and therefore
defines a resolvent. Because the radii of these discs do not depend on n, A
belongs to some of them, thus A € p(4). O

Remark 2.36. From this theorem it follows that ||R(A, A)|| blows up when A
approaches o(A).

For an unbounded operator A the role of the spectral radius often is played
by the spectral bound s(A) defined as

s(A) =sup{R\; A€ o(A)} (2.61)

Ezxample 2.87. To illustrate the concepts introduced in this subsection, we
continue the study of the differential operators from Examples 2.1 and 2.19 in
the spaces Ly, 1 < p < +o0o. Thus, let T be the operator defined by T'f = f’
on D(T) = {f € AC(I); f" € L,([0,1])}. The equation A\f —T'f = 0 has
a solution fy(z) = €’ which belongs to X for any A € C. Hence, o(T) =
op(T) = C and p(T) = 0.

If we consider the restriction Ty of T to the domain D(Tp) := {f €
D(T); f(0) = f(1) = 0}, which appeared in Example 2.19 in connection
with the adjoint of T, then clearly o, (Ty) = 0. However, if g € Im(A\ — Tp),
that is, g = (A — Tp) f for some f € D(Tp), then

1 1 1
e Mg(x)de =X [ e f(x)dr — [ e f'(z)dx = 0.
/ [ ]

As it is easy to see that this condition is also sufficient for g € Im(A —Tp), we
see that Im(AI—Tp) is closed in X for any A and therefore o(Tp) = 0, (Tp) = C
and hence p(Tp) = 0. It is worthwhile to note that in this case the inverse of
A — T exists on I'm(AI — Tp) and it is a bounded operator there.

Thus, T is too large, and T} is too small an operator for its resolvent to
exist. Introducing the intermediate operator Ty := T'|p(r,), where D(T}) :=
{f € D(T); f(1) =0}, we find that the resolvent

RO\ Ty)g(z) = / e Mg(y)dy (2.62)

x

exists for any A € C, so that ¢(71) = 0 and p(71) = C. To find the norm
of the resolvent, we use the scalar version of the Young inequality (2.48) on
the whole line. Letting r = p,q = 1, we define f(z) = e’ x[_1,0j(z), and
g(x) = g(z) for x € [0,1] and g(z) = 0 for z > 1 and = < 0. The formula
(2.62) is valid for all z, so that
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RN, T1)gllz, o1y < IR T, @) < Az 9]z, =)

1—e?
3 lgllz, 0,1 (2.63)

Later, in Chapters 8 and 9, we encounter differential operators defined on
the positive half-line. Here we have a look at the simplest such case. Let
X = L,(R4) and D(T) = {f € X; f € ACRy),f € X}. As before,
uy(r) = e are formal solutions of A\f —T'f = 0, however, they are in X only
if ®X < 0. Thus, 0,(T) = {A € C; RA < 0}. On the other hand, by direct
integration, we find that for any A € C with A > 0, the operator

o0

RO\ T)g(x) = / A g (y)dy (2.64)

x

is the resolvent of T'. As before, its norm can be found by the Young inequality,
this time with fx(z) = € X (_oo,0)(x), RA > 0.

1
IR T)gllp < Ifxlleliglly = < lgllp- (2.65)

Similar discussion applies to the operator T' defined in X = L,(R). In this
case, we find that the point spectrum is empty and both open half-planes
{A € C; RA = 0} are in p(T'). It follows that for RA > 0 the formula (2.64)
extended to z < 0 still gives the resolvent with the estimate above. For RA < 0
direct integration gives

x

RO\ T)g(z) = — / Ay (y)dy (2.66)

— 00

and the norm estimate ||R(X\, T)g|l, = [A|7Ygll, follows.

So far, in both half-line and full-line cases, we have left aside the question
of whether the imaginary line iR is in o(T'), or in p(T'). To answer, let h be
a differentiable function with ||h[|, = 1 and define h(z) = '/Pe’**h(ex) for
some 3 € R. Then (i3I — T)hc(z) = —e*1/PeBh/ (ex). We have

Il = [ ntea)pas = g = 1.
I

and

1B — T)h |2 = ¢+ / W (ex)|Pda = 2|12,
I

where [ is either R} or R. Thus, we see that the inverse operator transforms
sequences of functions converging to zero to sequences of functions from the
unit sphere and thus the inverse cannot be continuous. Hence, iR C o(T)
(with equality if I = R).
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Let us consider one more example, of a multiplication operator, which later
appears in applications.

Ezample 2.38. Let X = L,(£2),1 < p < 400 and consider a measurable and
almost everywhere finite function a : 2 — C. We call the set

tess(2) :={A€C; p({x € 2; |la(x) — A <e}) #0foralle >0}
the essential range of a. It is easy to see that
lallL. (@) = sup{|Al; A € aess(£2)}.
We introduce the maximal multiplication operator M, f := af on
D(Ma) :={f € Lp(2); af € Ly(2)}.

It can be proved that (M,, D(M,)) is closed and densely defined. In fact,
let f,, = f and af,, — ¢g in X. Then we can select a common subsequence
such that f,, — f and af,, — g almost everywhere. Thus af = ¢ almost
everywhere. For the density of the domain, for any f € X we take the sequence
(fn)nen defined by f,(x) = f(x) if |a(x)| < n and f,(x) = 0 if |a(x)| > n
almost everywhere. Clearly, f, € D(M,). Because a is almost everywhere
finite, f, — f almost everywhere and because |f,| < |f], fn — f in X.

Moreover, M, is bounded if and only if a € L. (£2). Indeed, let a ¢
Loo(£2). Tt is sufficient to consider the case when, for each n, there is a set
2, with p(92,) > 0 such that a > n a.e. on §2,,. Then f, = (u(2,))"?Pxq,
satisfies || fullp, = 1 and || My full, > n so that M, is unbounded. The converse
statement is obvious. From this result we immediately obtain that M, has a
bounded inverse if and only if 0 & aess(£2) and 0(My) = dess(£2).

2.1.8 Spaces of Type L

In applications we use standard sequence and function spaces. The most often
used sequence spaces are the space ¢g of all sequences converging to 0 equipped
with the norm
[1x[| = sup [z,
neN
where x = (@, )nen, and the spaces I, of sequences that are summable with
some power p € [1,00) where the norm is given by

ety o= (S pear) " 267

The function spaces were discussed in Subsection 2.1.1. Let us recall that the
norm in the spaces of continuous functions C(§2) is given

[[ull = sup [u(s)],
sef?
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whereas the counterparts of the /, norm (2.67) were defined in (2.1).

In Section 1.1 we introduced the semigroup approach to the abstract
Cauchy problem (1.2) in which we use functions t — wu(t) taking values in
a Banach space X. In many cases the space X itself is a space of numeri-
cally valued functions or of classes of functions defined on some set {2 so that
the solution should be a scalar function of several variables. Then we would
like the differentiation u’ in (1.2) to be somehow equivalent to the partial
differentiation with respect to variable ¢ as in (1.1).

If X = C(£2), then the connection is obvious: for each t there is a single
function u(t) = ¢(t,-) continuous with respect to the second variable. If u is
differentiable in the norm of X at t = tg, then there is u/(tg) = ¥(to, ) for

which
. sup | 208:5) = 0lt0.)
t—toge t—to

— ’l/)(to, S) =0
but from this it follows that for each s € {2 we have

o £16:3) = lto.5)

t—to t—to

= w(t07s).

The situation is far less obvious if each u € X corresponds to a class of
numerically valued functions, as in the case of L, spaces. We discussed this
in Example 2.23. To deal with such problems, in [100] the authors introduced
the concept of spaces of type L which we now explain.

Consider the space Lo(§2,dp) where {2 is a o-finite measure space; see
Section 2.1.1. If ¢y and ¢ are functions defined on {2, then we write ¢ =
@2, if they differ on a set of measure 0, that is, if they represent the same
element of Lo(§2,dp). Let X C Lo(£2,du) be a Banach space and let [f](-) be
a representative of f € X. We say that X is of type L if it has the following
two properties.

(i) If u is a continuous X-valued function defined on I = [a, 3], then there
exists a function ¢ measurable on the product [a, 8] x £2 such that u(t) =
¢(t,-) for each t € [a, B]. Note: u(t) = ¢(t,-) means equality in X.

(ii) If w is continuous on I = [«, ] and ¢ is any function that is measurable
on I x §2 and satisfies u(t) = ¢(t,-) for each t € [a, ], then

B

B
/u(t)dt (1) =~ /(;S(t,-)dt, (2.68)

(6%

where the integral on the left-hand side is the abstract Riemann inte-
gral and the integral on the right-hand side is the Lebesgue integral of
numerically valued functions.

The following two theorems have been proved in [100, pp. 69-71].
Theorem 2.39. Any space L,(2), 1 < p < oo is of type L.
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Proof. If w is strongly continuous on I = [a, (], then it belongs to L (I, X)
by Proposition 2.21(a) and Theorem 2.22. Hence, by Example 2.23, there is
a function ¢y measurable on I x {2, such that [u(t)](-) = ¢o(t,) for almost
all t € I. We can modify this function on the set of measure zero to make
this equality hold for all ¢ € I without changing measurability so that the
property (i) is satisfied.

Property (ii) follows directly from (2.36) and the fact that for continuous
functions Riemann and Bochner integrals coincide. 0O

Next we show that the identification of abstract functions and their mea-
surable representations extend to their derivatives.

Theorem 2.40. Let X be a Banach space of type (L). If u is an X -valued
function on I = [a, (], n-times continuously differentiable, then there exists a
numerically valued function ¢(t,s) measurable on I X £2 such that for 0 < k <
n—1, OF¢(t,s) is absolutely continuous for each's € 2, and OF¢(t,-) = u¥) ()
for each t € I. Moreover 0}*¢(t,s) exists almost everywhere in I x {2 and
op(t,-) =u™(t) for almost all t € I.

Proof. Let y(t) = u(™(t). By (i) there exists a numerically valued measurable
function ¢g(t,s) on I x 2 such that y(t) = ¢o(t, ). Define

o1(t,8) = /(bo(z,s)dz

From property (ii) this integral can be replaced by the Riemann integral of
u(™ so that

t
/u(") dz = u" V() —u™Y(a). (2.69)

The integral f; 00(z,8)dz may not exist for a set of s-measure 0. In this case
we redefine ¢q(t,s) to vanish identically for such s. Because the modification
is made on a set of measure zero, the redefined function can be used as well as
the original one. In such a case ¢;(t,s) will be absolutely continuous in ¢ for
any s. Furthermore, ¢1(t,s) is measurable on I X {2 as the indefinite integral
of a measurable function.

Because for each s, ¢1(t,s) is absolutely continuous in ¢, it is differentiable
in ¢t almost everywhere on I. From this, however, it does not follow that the
set on which ¢4 is not differentiable is measurable in the product I x 2 (and
of measure zero). However, the function

of (t,s) = hI;?jgp ¢1(t + h, S;>L — ¢1(t,s)
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is measurable in I x 2. Let F' C I x £2 be the set where ¢ (t,8) # ¢o(t,s); then
I is measurable in I x 2. However, because for each s we have differentiability
a.e. in t, each s-section of F' is of measure zero and because F' is measurable,
we see that F' has measure zero (this follows from the Fubini theorem for the
characteristic function of F' — the iterated integral with respect to ¢ vanishes
for each s). The same argument can be applied to liminf, therefore we have

6t¢)1 (ta S) = ¢70 (ta S)

almost everywhere in I x {2 and hence the equality holds almost everywhere
in s for almost all ¢ € I. In other words

Oy (t,) = ul™(t).

Next, we apply (ii) to ¢1(¢,s) and obtain

d2(t,s) /t¢1(zvs)dz

and, by (2.69),

¢2(t7 ) :/(u("*l)(Z)fu(nfl)(a))d,z: u(n72)(t)iu(n72)(a)i(tfa)u(nfl)(a).

Again, ¢(t,s) is measurable on I x £2, but now, because ¢1(¢,s) is absolutely
continuous in ¢ for each s, we obtain that

atd)Z (tv S) = d)l (ta S)

at all points of I x 2.
Proceeding in this way, we finally obtain

t
buts) = / b 1(28)dz,

where ) .
(-«
ont,) =) 3 L 09(a),
k=0 :
Because « is fixed, we can take any representation «(*)(a) and obtain in this
way the desired representation of u, namely,

n— —a)k
6(1,5) = 0u(t,9) + 5 L) ) (s).

k=0



42 2 Basic Facts from Functional Analysis and Banach Lattices

2.2 Banach Lattices and Positive Operators

In many processes in the natural sciences only nonnegative solutions are mean-
ingful. This is the case when the solution is a probability, a density function,
the absolute temperature, and so on. Thus, mathematical models of such pro-
cesses should have the property that nonnegative data yield nonnegative solu-
tions. If we work in concrete spaces of functions, then the notion of positivity
is natural: either pointwise for continuous functions or almost everywhere in
the spaces of measurable functions. However, in a general setting we have to
find an abstract notion generalizing the pointwise concepts of positivity.

2.2.1 Defining Order

In a given vector space X an order can be introduced either geometrically,
by defining the so-called positive cone (in other words, what it means to be
a positive element of X'), or through the axiomatic definition. We follow the
second approach and the reader interested in the first is referred to the survey
article [49].

Definition 2.41. Let X be an arbitrary set. A partial order (or simply, an
order) on X is a binary relation, denoted here by ‘>’, which is reflexive,
transitive, and antisymmetric, that is,

(1) x> x for each x € X;
(2) x >y and y > x imply x =y for any x,y € X;
(8) x>y andy > z imply x > z for any z,y,z € X.

We need a number of related conventions and definitions. The notation x < y
means y > . An upper bound for a set S C X is an element z € X satisfying
x >y for all y € S. An element = € S is said to be mazimal if there is no
S 3y # x for which y > z. A lower bound for S and a minimal element are
defined analogously. A greatest element (respectively, a least element) of S is
an x € S satisfying x > y (respectively, © < y) for all y € S.

We note here that in an ordered space there are generally elements that
cannot be compared and hence the distinction between maximal and greatest
elements is important. A maximal element is the ‘largest’ amongst all com-
parable elements in S, whereas a greatest element is the ‘largest’ amongst all
elements in S. If a greatest (or least) element exists, it must be unique by
axiom (2).

The supremum of a set is its least upper bound and the infimum is the
greatest lower bound. The supremum and infimum of a set need not exist. It
is worthwhile to emphasize that an element s is a supremum of the set .S if,
for any upper bound y of S, we have s < y.

Let z,y € X and x < y. The order interval [x,y] is defined by

[,9] ={z € X; 2 <z <y}
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For a two-point set {z,y} we write A y or inf{z,y} to denote its infimum
and z Vy or sup{z, y} to denote supremum. We say that X is a lattice if every
pair of elements (and so every finite collection of them) has both supremum
and infimum.

From now on, unless stated otherwise, any vector space X is real.

Definition 2.42. An ordered vector space is a vector space X equipped with
partial order which is compatible with its vector structure in the sense that

(4) x >y implies x + z > y+ z for all x,y,z € X;
(5) x >y implies ax > ay for any x,y € X and a > 0.

The set X1 ={x € X; x > 0} is referred to as the positive cone of X.
If the ordered vector space X is also a lattice, then it is called a wvector
lattice or a Riesz space.

Ezxample 2.43. Typical examples of Riesz spaces are provided by function
spaces. If X is a vector space of real-valued functions on a set {2, then we can
introduce a pointwise order in X by saying that f < g in X if f(z) < g(z) for
any z € S. Equipped with such an order, X becomes an ordered vector space.
Let us define on X x X the operations f V g and f A g by taking pointwise
maxima and minima; that is, for any f,g € X,

(f Vg)(x) :== max{f(z),g(x)},
(f Ng)(x) := min{ f(z), g(x)}.

We say that X is a function space if fV g,f ANg € X, whenever f,g € X.
Clearly, a function space with pointwise ordering is a Riesz space. Examples
of function spaces are offered by the spaces of all real functions R or all real
bounded functions M ({2) on a set {2, and by, defined earlier, spaces C({2),
C(92),orl,, 1 <p<oo.

If 2 is a measure space, then all above considerations are valid when the
pointwise order is replaced by f < g if f(x) < g(x) almost everywhere. With
this understanding, Lo(£2) and L, ({2) spaces with 1 < p < oo become function
spaces and are thus Riesz spaces.

Ezxample 2.44. A convex cone in a vector space X is a set C characterised by
the properties:

(i)yc+Ccc
(ii) aC C C for any « > 0;
(iif) C N (=C) = {0}.

We show that X is a convex cone in X. In fact, from axiom (4) we see that
if ¢,y > 0, then x +y > 0+y =y > 0, so (i) is satisfied. From (5) we
immediately have (ii) and, again using (4), we see that if x > 0 and —z > 0,
then 0 > x so that by (2) we obtain 2 = 0.

On the other hand, let C' be a convex cone in a vector space X. If we
define the relation ‘>’ in X by the formula y > z if and only if y —x € C,
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then X becomes an ordered vector space such that X = C. In fact, because
x—x =0 € C, wehave x > x for any x € X which gives (1). Next, let z—y € C
and y — 2z € C. Then by (iii) we obtain axiom (2). Furthermore, if z —y € C
and y — z € C, then we have t — 2z = (x —y) + (y — z) € C by (i). Hence > is
a partial order on X. To prove that X is an ordered vector space, we consider
x—y € Cand z € X; then (x4 2) — (y+2) = v —y € C which establishes (4).
Finally, if x —y € C and o > 0, then ax — ay = a(z — y) € C by (ii) so that
(5) is satisfied. Moreover, X, ={z € X; 2 >0} ={r e X; 2 -0 C} =C.

The cone C' of X is called generating if X = C' — C; that is, if every vector
can be written as a difference of two positive vectors or, equivalently, if for
any x € X there is y € X satisfying y > x.

The Archimedean property of real numbers is that there are no infinitely
large or small numbers. In other words, for any r € R4, lim,,_,o, nr = oo or,
equivalently, lim, ., n~'r = 0. Following this, we say that a Riesz space X
is Archimedean if inf,en{n~'z} = 0 holds for any x € X . In this book we
only deal with Archimedean Riesz spaces.

The operations of taking supremum or infimum have several useful prop-
erties which make them similar to the numerical case. We list and prove them
to give the reader an idea of how to operate with abstract definitions.

Proposition 2.45. [6, Theorem 1.2] For arbitrary elements x,y, z of a Riesz
space, the following identities hold.

1. x +y = sup{z,y} + inf{x, y};

2. x +sup{y, z} =sup{x + y,z + z} and v + inf{y, 2z} = inf{z + y,x + z};
3. sup{z,y} = —inf{—x, —y} and inf{z,y} = —sup{—=, —y};

4. asup{z,y} = sup{az,ay} and ainf{z,y} = inf{azx, ay} for a > 0.

Proof. 1. From inf{z,y} < y we obtain z + inf{z,y} < x + y so that x
z +y — inf{z,y} and similarly y < z + y — inf{z,y}. Hence, sup{z,y}
x +y — inf{z, y}; that is,

v +y > sup{z, y} + inf{z, y}.

On the other hand, because y < sup{x,y}, in a similar way we obtain z +y —
sup{z,y} < = and also x +y — sup{z, y} < y so that

x4y < sup{z,y} + inf{z, y}

and the identity in property 1 follows.

2. Clearly, z +y < z + sup{y,z} and = + z < x + sup{y, z} and thus
sup{z + y,x + z} < x + sup{y, z}. On the other hand, y = —z + (x + y) <
—x+ sup{x+vy,z+2} and similarly z = —z+ (v +2) < —z+sup{z+y,z+ 2}
so that sup{y, z} < —x + sup{z + y,x + 2z} or, equivalently x + sup{y, z} <
sup{z +y, z + z}. Together, we obtain x + sup{y, z} = sup{z +y,z + z}. The
other identity can be proved in the same manner.
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3. Because x,y < sup{z,y}, we obtain that —sup{z,y} < —z and
—sup{z,y} < —y and so —sup{z,y} < inf{—z,—y}. On the other hand,
if —x > z and —y > z, then z,y < —z and hence —z > sup{z,y}.
This shows that —sup{z,y} is the infimum of the set {—x,—y}; that is,
—sup{z,y} = inf{—=, —y}. To get the second identity we replace = by —z
and y by —y in the first one.

4. Let a > 0. Clearly, sup{az,ay} < asup{z,y}. If z > azx,ay, then
a~tz > x,y, hence sup{r,y} < a~'z which implies asup{z,y} < z; that is,
z = sup{ax, ay}. The second one is proved in the same way. 0O

For an element z in a Riesz space X we can define its positive and negative
part, and its absolute value, respectively, by

vy =sup{z,0}, @ =sup{—,0}, |2 = supfe, —z}.

The functions (z,y) — sup{z,y}, (z,y) — inf{z,y},z — x4 and © — |z| are
collectively referred to as the lattice operations of a Riesz space. The relation
between them is given in the next proposition.

Proposition 2.46. If x is an element of a Riesz space, then
T=Ty —T_, lz] =24 +a_. (2.70)
Thus, in particular, the positive cone in a Riesz space is generating.
Proof. By Proposition 2.45(1) and (3) we have
x =x + 0 = sup{z, 0} + inf{z,0} = sup{x,0} — sup{—=,0} = x4 —x_.
Furthermore, from Theorem 2.45(2) and (4), and the previous result we get

|x| = sup{z, —a} = sup{2z,0} — x = 2sup{z,0} —x =2z, —
=2zy —(zy —z_)=x4 +a_.

O

The absolute value has a number of useful properties that are reminiscent
of the properties of the scalar absolute value; that is, for example, || = 0 if
and only if z = 0, |ax| = |a||z| for any € X and any scalar «, as well as
some others which are proved below.

For a subset S of a Riesz space we write

sup{z, S} =z V S := {sup{z, s}; s € S},
inf{z, S} =z A S := {inf{z, s}; s € S}.

The following infinite distributive laws are used later.
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Proposition 2.47. [6, Theorem 1.5] and [116, Theorem 2.13.1] Let S be a
nonempty subset of a Riesz space X. If sup S exists, then sup{inf{z, S}} and
sup{sup{z, S}} exist for each x € X and

sup{inf{x, S}} = inf{z,sup S},

sup{sup{x, S}} = sup{z,sup S}. (2.71)
Similarly, if inf S exists, then inf{sup{x,S}}, inf{inf{z, S}} exist for each
r € X and

inf{sup{z, S}} = sup{z,inf S},

inf{inf{x, S}} = inf{z,inf S}. (2.72)

Proof. Let us assume y = sup S exists. Because for any s € S we have
inf{xz, s} <inf{z,y}, we can write

sup{inf{z, S}} < inf{z,sup S}

provided the left-hand side exists. To prove the existence and the equality, we
should prove that if z > inf{z, s} for any s € S, then z > inf{z,sup S}. Using
property 2 of Proposition 2.45, we have

s = inf{x, s} + sup{z, s} —x < z 4+ sup{z, s} —x < z +sup{z,y} — =
for any s € S so that taking the supremum over S we get
y < z+sup{z,y} — .
Again using Proposition 2.45,  + y — sup{z, y} = inf{z,y} and therefore
inf{x,sup S} = inf{z,y} < z

which proves the first equation of (2.71).

To prove the second identity, again let y = sup S exist and note that
sup{z,y} is an upper bound for the set sup{x, S}. If z is another upper bound
for this set we have z > sup{z,s} > s for all s € S. Hence z > y. Because
z > x, we get z > sup{z,y}. Thus sup{z,y} = sup{sup{z, S}}.

Identities (2.72) can be proved in the same way. 0O

The following inequalities are essential in proving the relations between
order and norm in the later sections.

Proposition 2.48. [6, Theorem 1.6] For arbitrary elements x,y, z of a Riesz
space X, the following inequalities hold.

L l2] = [yl < e +yl < |2 + lyl;
2. |sup{z, z} —sup{y, z}| < |z — y| and |inf{z,z} — inf{y,z}| < |z —y|.
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Proof. 1. Clearly, we have z +y < |z| + |y| and —z —y < |z| + |y| so that
|x+y| = sup{z+y, —x—y} < |z|+]|y|. From this we see that |z| = |(z+y)—y| <
|z+y|+]|y| and in the same way |y| < |z+y|+|x|. Hence, by the same argument,
el — Jyl| < [z + .

2. By Proposition 2.45, item 3, we have sup{z, z} = sup{(z — 2) + 2, (z —
z) + z} = sup{z — 2,0} + z and hence

sup{x, z} — sup{y, z} = (sup{z — 2,0} + z) — (sup{y — 2,0} + 2)
=(@—2)+—(y—2)+
=((@z-y)+y—2)+—WY—2)+

Next, obviously a + b < sup{a,0} + sup{b,0} and 0 < sup{a,0} + sup{b,0}
for any a,b € X so that

(z=y)+W—2)s —(y—2)4 =sup{(z —y)+ (y —2),0} = (y — 2)+
<sup{z —y,0} +sup{y — 2,0} = (y — 2)4+ = (z —y)4 < |r —y|.

Similarly, sup{y, z} — sup{z, z} < |z — y| and thus

|sup{y, z} — sup{z, z}| < |z —y|.
The second inequality can be proved in the same way. 0O

We note that the existence of suprema or infima of finite sets, ensured by
the definition of a Riesz space, does not extend to infinite sets. This warrants
introducing a more restrictive class of spaces.

Definition 2.49. We say that a Riesz space X is Dedekind (or order) com-
plete if every nonempty and bounded from above subset of X has a least upper
bound. X is said to be o-Dedekind or (o-order) complete, if every bounded
from above nonempty countable subset of X has a least upper bound.

Remark 2.50. In some definitions, [6, p. 12], for a Riesz space X to be order
complete, it is enough if any directed upward set of nonnegative elements has a
supremum in X. Here, a set S C X is called directed upward if for any x,y € S
there is z € S such that x < z and y < z. We prove that the supremum of
any set (if it exists) can be obtained through a directed set of nonnegative
elements so that both definitions are equivalent.

Let S be a nonempty subset of X. First, we show that sup S can be replaced
by sup S, where S is the set of all suprema of finite collections of elements from
S. It suffices to show that the sets of upper bounds for both sets are the same.
If w is an upper bound for S, then v > s for any s € S but then, from the
definition of supremum, u > x for any = € S. Conversely, if u is an upper
bound for S, then, because the supremum of a set is not smaller than any of
its elements, we obtain u > s for any s € S. Hence both suprema exist or do
not exist at the same time and are equal in the former case. By the second
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equation of (2.71) we see that the set S is directed. Note that we have proved
even more: for any =,y € S we can take z = sup{z,y} € S.

Next, let £y € S. Then supS and supS; := sup{z € S; = > z(} either
both exist and are equal, or do not exist. In fact, clearly any upper bound
for S is also an upper bound for S;. Conversely, if v is an upper bound for
S1, then for any = € S, sup{zo,z} € S and thus sup{zg,z} € S so that
u > sup{xg,x} > x. Hence we always can replace S by a set of nonnegative
elements using the shift

supS =sup{z € S; z > a9} =sup{z —xp; z € S,z — x9 > 0} + x0.

Ezxample 2.51. Order complete Riesz spaces are Archimedean. To show this,
let X be an order complete Riesz space and assume that z < n~'y for some
z,y € X4 and any n € N. Because u = sup{nz; n € N} exists in X, we can
write nx = (n+ 1)a —x < u — x. Taking the supremum of both sides, we find
u = u — = which yields z < 0. Because z is positive, we have x = 0.

Ezample 2.52. The space C([0,1]) is not o-order complete (and thus also not
order complete). To see this, consider the sequence of functions given by

1 for0<z< % — %,
fal@)=4n(3—2z) for i — L <<l
0 for % <z <l
This is clearly an increasing sequence bounded from above by g(z) = 1.
However, it converges pointwise to a discontinuous function f(x) = 1 for

x €10,1/2) and f(z) = 0 for = € [1/2,0]. In general, spaces C({2) are not
o-order complete unless {2 consists of isolated points.

On the other hand, the spaces l,, 1 < p < oo, are clearly order complete,
as taking the coordinatewise suprema of sequences bounded from above by
an [, sequence produces a sequence which is in [,.

If we move to the spaces L, (§2),p € {0}U[1, o0], then the problem becomes
more complicated. Because the measure is o-finite, the supremum and the
infimum of a countable subset of measurable functions are measurable, Lo ({2)
and Lo (f2) are o-order complete by definition, and the spaces L,({2) also
are o-order complete by the dominated convergence theorem for Lebesgue
integrals.

The proof that they are also order complete is much more delicate; see
[2, Problem 1.6.5] or [116, Example 4.23.2]. We recall that p is assumed to
be o-finite and S C Lo(£2). By Remark 2.50 we can assume that S consists
of nonnegative elements satisfying sup{f,g} € S whenever f,g € S. Let
2=, 2, with 0 < p($2,) < 400 and define p : Lo 1 (£2) — [0, 00) by

21 f
P = 2 i | T

‘QTL




2.2 Banach Lattices and Positive Operators 49

It is clear that p has the following properties: (a) f € Ly 1 (£2) satisfies p(f) =
0if and only if f =0; (b)if 0 < f < g and p(f) = p(g), then f = g; and (c) if
(fn)nen C Lo 4(£2) converges to f in an increasing way, then p(f,) — p(f)

The function p is bounded on Lo 4+(f2), therefore we can set m :=
sup,cg p(g) < +oo and choose a sequence (f,)nen C S such that p(f,) con-
verges to m. Because S was assumed to be a directed set, we can construct this
sequence to be increasing. Furthermore, S is bounded from above and (f,,)nen
is countable, thus it follows that there is f € Lo 4+ ({2) such that f,, converges
to f in an increasing way. By property (c), we also have p(f,) /" p(f).

We show that f = sup S. First, f is an upper bound for S. In fact, let g € S.
Then sup{g, fn} € S for any n € N and by (2.71) we get sup,,{sup{g, fn}} =
sup{g, f}. From f, < sup{g, fn} and p(sup{g, fo}) < m we obtain by (c)

that p(sup{g, f}) = m. Because 0 < f < sup{g, f}, property (b) gives f =
sup{g, f}, hence f > g and f is an upper bound for S. Let h € Lo(£2) be

another upper bound. Then f, < h, but because f is the pointwise limit
almost everywhere of (fy,)nen, we have f < h and thus f =sup S € Ly 4+ (12).

The fact that L,({2) are also order complete for 1 < p < oo then follows
from the Lebesgue dominated convergence theorem for p < 400 and directly
from the definition for p = co.

Remark 2.53. The notions of sublattice, ideal, band, and unit do not play
any significant role in the theory developed in this book. However, they are
important in the general theory of Riesz spaces and it is thus useful to have
some understanding of them. We point out that a vector subspace Xy of a
vector lattice X, which is ordered by the order inherited from X, may fail
to be a vector sublattice of X in the sense that Xy may be not closed under
lattice operations. For instance, the subspace

oo

Xoi= (£ e Li®) [ f(de=0)

does not contain any nontrivial nonnegative function, and thus it is not closed
under the operations of taking fi or |f].

Accordingly, we call Xq a vector sublattice or a Riesz subspace if Xg is
closed under lattice operations. Actually, it is sufficient (and necessary) if it is
closed under one lattice operation; that is, X is a vector sublattice if one of
the following conditions holds: (i) |z| € Xo; (ii) 24 € Xo, whenever z € X. A
subset S of a vector lattice is called solid if for any z,y € X from y € S and
|z| < y| it follows that = € S. A solid linear subspace is called ideal; ideals are
automatically Riesz subspaces. A band in X is an ideal that contains suprema
of all its subsets. Any subset S C X uniquely determines the smallest (in the
inclusion sense) Riesz subspace (respectively, ideal, band) in X containing S,
called the Riesz subspace (respectively, ideal, band) generated by S.

If S = {z} consists of a single point, then the ideal generated by it, called
the principal ideal generated by z, is given by
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E, = {y € X; there exists A > 0 such that |y| < Az|}.

If for some vector e € X we have E, = X, then e is called an order unit. A
principal band generated by x € X is given by

By = {y € X; sup{|y| A nlz|} = |y|}.
neN

An element e € X is said to be a weak unit if B, = X. It follows that, in a
Banach lattice, e > 0 is a weak unit if and only if, for any z € X, |[z| Ae =0
implies = 0. Every order unit is a weak unit. If X = C({2), where {2 is
compact, then any strictly positive function is an order unit. On the other
hand, L, spaces, 1 < p < 400, will not typically have order units, as they
include functions that could be unbounded. However, any strictly positive a.e.
L, function is a weak order unit.

2.2.2 Banach Lattices

As the next step, we investigate the relation between the lattice structure and
the norm when X is both a normed and an ordered vector space.

Definition 2.54. A norm on a vector lattice X is called a lattice norm if

lz| <ly| implies |[lz[| < [ly]|. (2.73)
A Riesz space X complete under the lattice norm is called a Banach lattice.
Property (2.73) gives the important identity:

[zl = [llz]]l, = €X. (2.74)

In fact, because x < |z|, we have |z| < |(|z|)| = |z| < |z| so that we have both
]l < [ll2[ll and [[J]]| < {|2]]-

Proposition 2.55. If X is a normed lattice, then all lattice operations are
uniformly continuous in the norm of X with respect to all variables involved.

Proof. Putting z = 0 in the Proposition 2.48(2), and taking norms, we imme-
diately get continuity of z — x4 and thus, by (2.70), of x — |z|. Using again
Proposition 2.48(2) and the triangle inequality from (1), we obtain

|sup{z, z} — sup{y,v}| < |z —y| + |z — v|,

which yields continuity of sup with respect to both variables. Continuity of
inf is obtained analogously. O

A linear functional z* on a vector lattice is said to be positive if <z*, z>> 0
for any z € X, . Bounded positive functionals form a convex cone in X* and
thus define a natural ordering of X*. It can be proved, [6, Theorem 12.1], that
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the normed dual of a normed Riesz space is a Banach lattice under this order.
Moreover, the following stronger versions of norm representation formulae
(2.21), (2.20) hold,

lz]| = sup <z*,z>, (2.75)
0<z*eB*
and
lz*|| = sup <z*,a>. (2.76)
0<zeB

In addition, the evaluation map X — X** is a lattice isometry so that X
becomes a Riesz subspace of X**.

Two important classes of Banach lattices that play a significant role later
are provided by the AL- and AM- spaces.

Definition 2.56. We say that a Banach lattice X is

(1) an AL-space if ||z +y|| = ||z[| + |ly|| for all z,y € X,
(ii) an AM-space if ||z V y|| = max{||z||, |y||} for all z,y € X 4.

Example 2.57. Standard examples of AM-spaces are offered by the spaces
C(£2), where (2 is either a bounded subset of R™, or in general, a compact
topological space. Also the space Lo (£2) is an AM-space. On the other hand,
most known examples of AL-spaces are the spaces L1 ({2). We observe later
that these examples exhaust all (up to a lattice isometry) cases of AM- and
AL-spaces. However, particular representations of these spaces can be very
different and include, for example, spaces of charges and measures of bounded

variation; see [5, Sections 7.6, 8.12 and 8.13].

Remark 2.58. In some sources (see, e.g., [1, 6]) the definition of AL- and AM-
spaces requires that z and y satisfy additionally x Ay = 0. If z and y are
functions, then this requirement means that supports of z and y should be
disjoint. In the functional setting it is clear that the properties stipulated
in Definition 2.56 hold irrespective of whether the supports of z and y are
disjoint or not. Because AM- and AL-spaces are lattice isometric to respective
function spaces, both definitions are equivalent, [2, Problem 3.1.7].

It can be proved, [6, Theorem 12.22] and [1, Theorem 3.3], that a Banach
lattice X is an AL-space (respectively, AM-space) if and only if its dual X* is
an AM-space (respectively, AL-space). Moreover, if X is an AL-space, then
X* is a Dedekind complete AM-space with unit e* defined by X* 3 e*(z) =
|z+]] = ||x—]| for z € X (thus e* coincides with the norm of x on the positive
cone). Moreover, if X is an AM-space with unit e, then X** is also an AM-
space with unit e.
Any AM-space X with unit e can be equivalently normed by

”xHoo = Hlf{)\ > 0; ‘(E| < )\e}
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(see, e.g., [6, p. 188]). In this norm the unit ball of X coincides with the order
interval [—e, e]. On the other hand, any Banach lattice contains AM-spaces
with unit. Precisely speaking, [6, Theorem 12.20], the principal ideal generated
by any element u € X with the norm

|z|loo = inf{X > 0; |z| < Aul},

becomes an AM-space with unit |u|, whose closed unit ball coincides with the
order interval [—|u], |u]].
The following results give the full characterisation of AL- and AM- spaces.

Theorem 2.59. [6, Theorem 12.26] A Banach lattice is an AL-space if and
only if it is lattice isometric to an L1(§2) space.

Theorem 2.60. [6, Theorem 12.28] A Banach lattice X is an AM-space with
unit if and only if it is lattice isometric to some C({2) for a unique (up to
a homeomorphism) compact Hausdorff space 2. In particular, X is an AM -
space if and only if it is lattice isometric to a closed vector sublattice of a

C(£2) space.

Remark 2.61. Looking at these two theorems one may be tempted to discard
abstract concepts of AL- and AM-spaces and instead only focus on the spaces
C(£2) and L;(£2). Therefore it is important to note that the set {2 in, say, The-
orem 2.59, is an abstract locally compact and extremally disconnected Haus-
dorff topological space and therefore the amount of useful information about
a general AL-space which can be obtained by analysing its L; representation
is very limited.

2.2.3 Positive Operators

Definition 2.62. A linear operator A from a Banach lattice X into a Banach
lattice Y is called positive, denoted by A > 0, if Az > 0 for any = > 0.

Ezample 2.63. For X = L1({2), a typical example of a positive operator is
offered by the integral operator

(Af)(x) = / k(% y) f(y)dy.
(]

where & > 0 is a measurable function on 2. In general A is unbounded.

However, it becomes bounded if, for example, [(ess Supyep k(x,y))dx < +oo.
Q2

An operator A is positive if and only if |Az| < A|x|. This follows easily from
—|z| < a < x| so, if A is positive, then —Ajz| < Az < Alz|. Conversely,
taking z > 0, we obtain 0 < |Ax| < A|z| = Ax.
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If |Az| = Alz| for all x € X, then such A is called a lattice homomor-
phism. It can be proved, [6, Theorem 7.2], that lattice homomorphisms can
equivalently be defined as operators commuting with lattice operations, for
example, they are unique operators for which (Az)y = Azy. In addition, if
||[Az|| = ||z||, then A is called a lattice isometry.

Positive operators are fully determined by their behaviour on the positive
cone. Precisely speaking, we have the following theorem.

Theorem 2.64. If A : X, — Y, is additive, then A extends uniquely to a
positive linear operator from X toY . Keeping the notation A for the extension,
we have, for each v € X,

Azr = Az — Ax_. (2.77)

Proof. Because the operation of taking positive and negative part is not linear,
it is not a priori clear that Az := Az, — Ax_ is an additive operator. However,
by taking two representationsof z: x = x4 —x_ = x1—xo withax, x_, 21,29 >
0, we see that zy + 29 = x_ + 1 so that Az, — Az_ = Az — Azs and Ax is
independent of the representation of z. Asx +y =24 +y4 — (z— +y-) isa
representation of z + y we see that A(x +y) = A(zy —2_) + Alyy —y—) =
Az + Ay.

To prove homogeneity of A, we first observe that if 0 < y < =z, then
Ay < Az. Obviously, from the additivity, it follows that A is finitely additive
and satisfies A(—x) = —A(x); thus it is homogeneous with respect to rational
numbers. Indeed, taking r = p/q, where p and ¢ are integers, we have

pA(z) = A(pz) = A <q§x> — A (Zw) .

Now, let z € Xy, A > 0, and choose sequences of rational numbers (7, )nen
and (t,)nen satisfying 0 < r, < A < ¢, for all n € N and monotonically
converging to A. From the homogeneity for rational numbers we obtain

rnA(z) = A(rpz) < A(Az) < A(tpz) = t,A(x),

from where, using the fact that X is Archimedean, we obtain A(Az) = AAx.
Finally, by taking arbitrary x € X and A > 0 we have

AAz) = AQxy) — A(dz-) = AMA(zy — 22)) = Mz,
and for A < 0 the thesis follows by
A(Az) = —A(—Ax) = MAz.

Finally, let us denote by B any other linear extension of A. It must be a
positive operator and because it is linear it must satisfy

Bx=B(zy —x_)=Bxy — Bx_ = Axy — Azx_ = Az,

and hence the extension is unique. O
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Another frequently used property of positive operators is given in the
following theorem.

Theorem 2.65. If A is an everywhere defined positive operator from a Ba-
nach lattice to a normed Riesz space, then A is bounded.

Proof. If A were not bounded, then we would have a sequence (x,,)nen sat-
isfying ||z,,|| = 1 and ||Az,| > n3, n € N. Because X is a Banach space,
=Y n 3z, € X. Because 0 < |z,|/n? < z, we have oo > ||Az| >
|A(|2z,|/n? )|| > [|A(x,, /n?)|| > n for all n, which is a contradiction. O

Ezxample 2.66. The assumption that X in Theorem 2.65 is a complete space
is essential. Indeed, let X be a space of all real sequences which have only a
finite number of nonzero terms. It is a normed Riesz space under the norm
Ix|| = sup, {|zn|}, where x = (z,,)nen. Consider the functional

f(x) = ijlxn'

It is a positive everywhere defined linear functional. However, taking the se-
quence of elements x,, = (1,1,...,1,0,0,...), where 0 appears starting from
the n 4 1st place, we see that ||x,|| =1 and f(x,) = n for each n € N so that
f is not bounded.

A striking consequence of this fact is that all norms, under which X is
a Banach lattice, are equivalent as the identity map must be continuously
invertible, [6, Corollary 12.4].

The set of all positive operators from a Banach lattice X to another Banach
lattice Y is a convex cone in the space £(X,Y’), thus it generates a natural
order: A < B whenever Ax < Bz for all x € X,. This cone, however, in
general does not generate £(X,Y) (e.g., [6, Example 1.11]).

We point out here an easy and often used result on positive operators.

Proposition 2.67. If A is positive, then

[All = sup Az
220, [|z]|<1

Proof. Because Al = sup < [|[Az| > sup,>o <1 |4z, it is enough to
prove the opposite inequality. For each x with ||z|| < 1 we have |z| = x4 +
x_ > 0 with ||z|]| = |||z]||] < 1. On the other hand, Alz| > |Az|, hence
ALl > 1Azl = | Az]l. Thus supy<y [42] < $upo 4op<: I Asl] and the
statement is proved. 0O

Remark 2.68. As a consequence, we note that if 0 < A < B, then [|4| <
|| B||. Moreover, it is worthwhile to emphasize that if there exists K such that
||[Az|| < K||z|| for & > 0, then this inequality holds for any = € X. Indeed, by
Proposition 2.67 we have ||A|| < K and using the definition of the operator
norm, we obtain the desired statement.
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2.2.4 Relation Between Order and Norm

Existence of an order in some set X allows us to introduce in a natural way
the notion of convergence. However, in general, sequences are not sufficient to
properly describe all related phenomena and thus we have to resort to nets.

We say that an ordered set A is directed if any pair of elements has an
upper bound. Then, by a net (24)aca in a set X, we understand a function
from the indezr set A into X.

By a subnet we understand a net (yg)gep such that for any a € A there
is B € B such that for each B 3 8’ > 3 there is o’ > a such that yg = 4.

Example 2.69. A sequence is a special example of a net with subsequences
being examples of subnets. However, a sequence may have subnets that are not
subsequences as shown in the following example. The net (¥, n)m, nenxny where
Ym.n = m>+n?+2mn+1 and Nx N is directed by the order (m,n) < (mq,n1)
if m < my; and n < nj, is a subnet of the sequence (x,)nen defined by
z, = n? + 1. This follows from the fact that y,,, are elements of (z,)nen
with indices given by the function ¢(m,n) = m + n. On the other hand,
(Ym,n)m.neNxN is not a subsequence of (z,,)nen.

A net (z4)aca in a normed space X converges to some point z € X if for any
€ > 0 there is ag € A such that for any a > oy we have ||z, — z|| < e. We
write this as z, — z or explicitly limaecn 4 = T in norm.

A net (4)aeca in an ordered set X is said to be decreasing (in symbols
xo |) if for any ag,a9 € A with ay > as we have z,, < z,,. The notation
Zo |  means that z, | and inf{z,; o € A} = z. Furthermore, we write
ZTq | > x if the net is decreasing and z, > « for all o € A.

Symbols x,1 , o T «, and 2, T< z have analogous meaning.

Example 2.70. Any directed upward set A is a net defined by the identity
function I : A — A; that is, each element x € A is its own index. Moreover,
this net is clearly increasing.

Using these definitions we can analyse convergence of increasing and de-
creasing nets, where the limit is, respectively, the supremum or infimum of
the net. If (z4)aca is a net of arbitrary elements of X, then we say that it is
order convergent to x if there are nets (yg)sep and (z,),er such that ygl x,
zy | « and such that for any 8 € B and v € I there is a € A such that
ys < 74 < 2,. We write this as z, — z. It can be proved, [1, p. 17], that we
can take the sets B and I to be equal.

In the next two examples we investigate some properties of order conver-
gence and its relation to taking supremum and infimum.

Example 2.71. We show that a net in a partially ordered space can have at
most one limit. Indeed, assume z, — z and z, — y and let the nets (y3)pen,
(2y)~yer define the convergence of (x4 )aca to x and the nets (vg)oco, (Wu)uem
define the convergence of (z4)aeca to y. By the definition of convergence and
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the definition of an ordered set, for each (3,7) and (6, ) we can choose a
common «g such that yg < x4 < zy and vg < 2, < w), for each o > ag. This
means yg < w, and vy < z, for all 8, p,0,v which shows x <y and y <z
and establishes the uniqueness of the limit.

Example 2.72. Let X be an ordered set. If either x,1 x or z, | =, then x, N
Conversely, if 247 (resp., 24 |) and x4 > x, then 247 2 (resp., 24 | ).

To see this, let 2,1 = and consider two nets (z4)aca and (Yo )aca, defined
by Yo = xo and z, = x for each a € A. Because y, < z4 < 24, We obtain
immediately z, — .

To prove the converse, let the nets (y3)sep, (2y)yer define the convergence
of (£a)aca to . Thus, for each (3,7, there is a(f3,7) such that ys < z, < 2,
for all @ > «(f,7). Let us fix a. For any (3,7 there is o/ > sup{«a(8,7), a}
which implies z, < 2o < 2z, so that z, < z, for all & and ~y. Because z, | z,
we see that z, < x for any « so that z is an upper bound for the (z4)aca.
If 2, <y holds for each « then, as above, we see that y3 < y for each § and
because y3 T z, we have < y so z is the least upper bound.

The decreasing case in both statements can be proved along the same lines.

Proposition 2.73. Let X be a normed lattice. Then:

(1) The positive cone X is closed.
(2) If X 3 47 and limyen o = x in the norm of X, then

x =sup{zq; o € A}.
(8) If X 3 x4 | and limyen o =  in the norm of X, then

x =inf{x,; a € A}.

Proof. (1) Because X = {z € X; x_ = 0} and lattice operation X 3 =z —
x_ € X is continuous by Proposition 2.55, we see that X is closed.
(2) For any fixed o € A we have
li —da) =L — Lo
ﬁleni(mﬁ To) =2 —T
in norm and zg — o € X4 for § > « so that © — 2, € X for any o € A
by (1). Thus z is an upper bound for the net {z,}aeca. On the other hand,
if 2o, <y for all a, then 0 <y — z, — y — z so that, again by (1), we have
y > x and hence z = sup{z,; o € A}
The proof of (3) is analogous. 0O

Ezample 2.7/. The converse of Proposition 2.73(2) is false; that is, we may
have .1 = and (24)aca does not converge in norm. Indeed, consider x,, =
(1,1,1...,1,0,0,...) € lw, where 1 occupies only the n first positions. Clearly,
Sup,enXn =x = (1,1,...,1,...) but ||x,, — x||oc = 1.
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This example justifies introducing a special class of Banach lattices.

Definition 2.75. We say that a Banach lattice X has order continuous norm
if for any net (xa)aca, Ta l 0 implies ||z4| | 0.

Before we give examples of Banach lattices with order continuous norm, we
state and prove basic properties of them.

Theorem 2.76. For a Banach lattice X, the statements below are equivalent.

(1) X has order continuous norm;

(2) If 0 < x, 1< x holds in X, then (x,)nen is a Cauchy sequence;

(3) X is o-order complete and x,, | 0 implies ||z, | — 0;

(4) X is an ideal in X**;

(5) For every a,b € X, the order interval {z; a < x <y} is weakly compact.

Moreover, every Banach lattice with order continuous norm is order complete.

We prove equivalence of (1), (2) and (3) as they are directly relevant to the
material presented later in the book, whereas the others are proved in, for
example, [6, Theorem 12.9]. The proof depends on a general lemma.

Lemma 2.77. If X is Archimedean Riesz space and 0 < z,7< x for x,x,, €
X, a € A, then the set D := {y € X; x4 < y} is directed downward and
Zy.al 0 where 2y o =y — Za, (y,0) € D x A.

Proof. Because X is a Riesz space, inf{y;,y2} € D whenever y;,y2 € D and
we see that D is directed downward. Let 0 < u < y—x,, hold for all &« € A and
all y € D. Then z, < y — u also holds for all & € A and so y — u € D for all
y € D. By induction, we obtain y —nu € D for all n € N and y € D. Because
x € D, we obtain 0 < nu < z for all n and because X is Archimedean, u = 0.
Thus, 2y, | 0 holds. O

Proof of Theorem 2.76. (1)=(2). Let 0 < 2,7< z in X and fix ¢ > 0. From
the lemma we obtain existence of a net (yx)aea C X such that zyo | 0
where zx,o = yYx — o. Thus, there are Ag, ap such that |jyx — x| < € for
A > Ao, > ap. Using

125 = zall < llzs = yaoll + [lyr, — all

we obtain ||zg — z4| < 2¢ whenever o, > . Hence (T4)aca is also a
Cauchy net and therefore converges. This shows (2) (in a stronger net version).
Moreover, it follows from Example 2.52 that to prove order completness of
a Riesz space it is sufficient to prove existence of suprema of directed sets
of nonnegative elements, hence the argument above shows that X is order
complete.

(2)= (3). (2) yields that X is order, and hence o-order, complete. We have
0 <z —x, <z for any n € N and hence (z,,)nen is a Cauchy sequence. If
r, ~ x, then Proposition 2.73 3. and ||z,|| — 0 imply 2 = 0.
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(3)= (1). Let 2o | 0. If (z4)aeca is not a Cauchy net, then for some
¢ > 0, we can choose a countable increasing set of indices «a,, T for which
|Ta,,, — Za,| = c for all n. Because X is assumed to be o-order complete,
there is € X satisfying z,, | 2. The hypotheses of (3) imply then that
(Za,, Jnen is a Cauchy sequence, which is a contradiction. Thus, (4 )aea is a
Cauchy net converging to some y € X and Proposition 2.73(3) implies that
y =« and thus ||z,]|] 0. O

Ezxample 2.78. For 1 < p < 0o, the Banach lattice L,,({2) has order continuous
norm. Indeed, let f, | 0 almost everywhere. Then || f,||” = [, f2du — 0 from
the dominated convergence theorem and the statement follows from Theorem
2.76(3) as L,(£2) is o-order complete by Example 2.52.

Incidentally, this gives an independent proof that L,(£2),1 < p < oo are
order complete.

On the other hand, L, (£2) is order complete by Example 2.52 but its norm
is not order continuous. To see this, consider the o-algebra X' of measurable
subsets of 2 and let A be the subset of X' containing the sets which differ
from {2 by sets of positive measure, directed by the relation of inclusion.
Finally, take the net (xa)aca of characteristic functions of sets from A. Then
X2 — Xal0but ||[xo — xal =1 for all a € A.

Remark 2.79. We note the following general result pertaining to characterisa-
tion of spaces with order continuous norm: a o-order complete Banach lattice
X has order continuous norm if and only if l, is not lattice embeddable in X,
[6, p. 220]. (X is lattice embeddable in' Y means that there exists an operator
T:X — Y with al|z||x < ||Tz|ly < b||z||x for some constants a,b, that is
also a lattice homomorphism.) In particular, separable o-order complete Ba-
nach lattices always have order continuous norm as containing a copy of I
would make them nonseparable.

The importance of Banach lattices with order continuous norm stems mainly
from property 2 of Theorem 2.76 which states that increasing sequences dom-
inated in the order sense must necessarily converge in norm. There is an
important subset of this class with a stronger property that increasing and
norm bounded sequences are norm convergent.

Definition 2.80. We say that a Banach lattice X is a KB-space (Kan-
torovic—-Banach space) if every increasing norm bounded sequence of elements
of Xy converges in norm in X.

Ezample 2.81. We observe that if x, T x, then ||z,| < ||z| for all n € N
and thus any K B-space has order continuous norm by Theorem 2.76. Hence,
spaces which do not have order continuous norm cannot be K B-spaces. This
rules out the spaces of continuous functions, I, and L (£2).

To see that the K B-class is indeed strictly smaller, let us consider the
space cg. First we prove that it has order continuous norm. It is clearly o-
order complete. Let the sequence (X, )nen, given by x, = (z})ken, satisfy
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X, | 0. For a given € > 0, we find kg such that |a:,1€| < € for all k > kq. Because
(Xn)nen is decreasing, we also have |27| < € for all k > ko and n > 1. Then,
we find ny such that |2} < e for all n > ng and 1 < k < ko and combining
these estimates we see that ||x,|| < € for all n > ng so ||x,| — 0.

On the other hand, let us again take the sequence x,, = (1,1,...,1,0,0,...)
where 1 occupies n first positions. It is clearly norm bounded and increasing,
but it does not converge in norm to any element of ¢y. Hence, ¢y has not got
an order continuous norm.

The next theorems characterize the K B-spaces which appear in applications.

Theorem 2.82. Assume that X is a weakly sequentially complete Banach
lattice. If () nen is increasing and (||, ||)nen is bounded, then there is x € X
such that

lim z, =« (2.78)

n—oo

in X . In other words, weakly sequentially complete, and in particular reflexive,
Banach lattices are K B-spaces.

Proof. Let (zp)nen be an increasing and norm bounded sequence. For any
f € X* we have

<frxn> < [ fllllznll,

hence the numerical sequences (<f, z,>)nen are bounded. For f > 0 they are
also increasing and thus convergent. For arbitrary f € X* we have convergence
for fi and f_ and hence (z,)nen is weakly convergent so, because X is
weakly sequentially complete (and, in particular, if X is reflexive), we obtain
z € X. Next, because <f,z> > <f,z,> for all n and all f € X7, we get
<f,x — x,> > 0, which shows that x — x,, > 0 as an element of X** but
because X is a sublattice of X**, we obtain x — x,, > 0.

Thus, we have y,, = x — x,, | 0 weakly. For arbitrary ¢ > 0 take a ball B,
centered at 0 € X. Using the Mazur theorem, [172, Theorem V.1.2], mentioned
in Remark 2.9, we obtain that 0 € co{yn, }nen, where co{yn tnen denotes the
convex envelope of the set {y, }nen. Thus, every neighbourhood of 0 contains
elements of co{y,}nen and hence there is a collection Yy, -, yn, together
with nonnegative scalars A,,, -, An, with A,, +--- + A,, = 1 such that
AnyYny + -+ Ay Yn,, € Be. Taking n > max{ni,...,n;} we have

< )\nlynl +oee +)\nky'n«k € B(O,E),

hence ||y, || < e. Thus, lim, oo 2, =z in X. O
Theorem 2.83. Any AL-space is a K B-space.

Proof. If (z,,)nen is an increasing and norm bounded sequence, then for 0 <
T, < T, We have
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[Zml = ll2m = znll + [|l2n

as Ty, — T, > 0 so that
Zm — 2ol = [lzm | = 22l = 2wl = lzall]-

Because, by assumption, (||z,||)nen 18 monotonic and bounded, and hence
convergent, we see that (2, )nen is a Cauchy sequence and thus converges. O

Remark 2.84. The appearance of ¢y as an example of a space with order con-
tinuous norm, which is not a K B-space, is not a coincidence. It can be proved,
[6, Theorem 14.2], that the following properties are equivalent.

1. X is a K B-space;

2. X is weakly sequentially complete;

3. ¢p is not (lattice) embeddable in X.

2.2.5 Complexification

Our main interest is in real operators on real Banach spaces. However, in some
cases, especially when we want to use spectral theory, we need to move the
problem to a complex space. This is done by the procedure called complexifi-
cation.

Definition 2.85. Let X be a real vector lattice. The complexification X¢o of
X s the set of pairs (z,y) € X x X where, following the scalar convention,
we write (x,y) = x + iy. Vector operations are defined as in scalar case

z1+iy o+ iy = 21 + 22 + (Y1 +y2),
(a+iB)(z +iy) = az — By +i(Bz + ay).

The partial order in X¢ is defined by
o +iyo <z +iy; ifandonly if x¢ < 2y and yg = y;. (2.79)

The operators of the complex adjoint, real part, and imaginary part of z =
x + 1ty are defined through:

Z=z+1y =z — 1y,

Z+z
Rz = =z,
2
o~ 7272:
R4 97 Y

Remark 2.86. Note, that from the definition, it follows that z > 0 in X is
equivalent to z € X and x > 0 in X. In particular, Xo with partial order
(2.79) is not a lattice.
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Example 2.87. Any positive linear operator A on X¢ is a real operator; that
is, A: X — X. In fact, let X > x = x4 — x_. By definition, Az, > 0 and
Az_ >0s0o Azy,Ax_ € X and thus Az = Az, — Ax_ € X.

It is a more complicated task to introduce a norm on X because standard
product norms, in general, fail to preserve the homogeneity of the norm.

Ezample 2.88. Let us norm X¢o = X x X by the Euclidean norm. Then,
1L+ 2)(2 + iy) 1> = 2(][]* + [ly[I*),
and on the other hand,
11+ )z +ay)|* = (x = y) + iz + Y)II* = llz = ylI* + ]z + y|I
which gives the parallelogram identity in X yielding X to be a Hilbert space.

The simplest norm, compatible with multiplication by complex scalars, is

|l 4+ iy|ll|c = sup ||xzcosf+ ysind)|. (2.80)
0€[0,27]

It can be proved, [2, Problem 1.1.7], that this is a norm satisfying

1 .
Uzl + 1yl = llz + tylle < llzll + llyll

so that topological properties of X and X are the same.
If A is a linear operator on X, then it can be extended to X¢ according
to the formula
Ac(x +1iy) = Ax + i Ay.

Clearly, we have ||A|| < ||A¢||. Moreover,
[(Az)cos 0 + (Ay)sin 0| < [[A]l[|z cos 0 + ysin 0)[| < [|All[|= + iy,
thus taking supremum over 6 we obtain ||A¢|| < ||A|| and finally
[Acl = [[All- (2.81)

Remark 2.89. If for a linear operator A we prove that it generates a semigroup
of say, contractions, in X, then this semigroup will be also a semigroup of
contractions on X¢, hence, in particular, A is a dissipative operator in the
complex setting. Due to this observation we confine ourselves to real operators
in real spaces.

The disadvantage of (2.80) is that (Xc¢, | - ||¢) will usually not inherit the
lattice structure from X. Thus it is important to find a norm on X which
is compatible with the order in X¢. This is done by first introducing the
modulus on X¢. In the scalar case we obviously have



62 2 Basic Facts from Functional Analysis and Banach Lattices

sup («cosf + [sinf)
0€[0,27]

=|a+i3] sup (LCOSQ-FLSHIQ)

9cf0,2n] /a? + (32 Va2 + 32

=|a+if] sup cos(6 —0y) = |a+if, (2.82)
0€[0,27]

where cosfy = a/+y/a? + 32 and sinfy = /y/a? + $2. Mimicking this, for

x + 1y € X¢ we define

| +iy| = sup (zcosf+ ysinb).
0€[0,27]

It can be proved that this element exists. This follows because elements over
which we take the supremum belong to the principal ideal generated by |z|+|y|
and, as we noted when discussing AM-spaces, such an ideal is an AM-space
with unit |z| + |y| and thus it is lattice isometric to some C(£2). For C({2) the
existence of |z + iy| is proved pointwise by the argument leading to (2.82).

Such a defined modulus has all standard properties of the scalar complex
modulus, [2, Problem 3.2.2]: for any z, 21,22 € X¢ and X € C,

(a) |z| > 0 and |z| = 0 if and only if 2 =0,
(b) [Az] = |Allz],
(¢) |71 + 22| < |z1] + |22] (triangle inequality),

and thus one can define another norm on the complexification X by
1zlle = [l +iylle = lllz + iylll- (2.83)

Properties (a)—(c) and |z| < |z|, |y| < |z| imply
1
Ul + i) < llelle < Nl + flll,

hence || - || is a norm on X which is equivalent to || ||¢. As the norm || -] is a
lattice norm, we have ||z1]|. < ||22]|c, whenever |z1| < |22|, and || - || becomes
a lattice norm on X¢.

Definition 2.90. A complex Banach lattice is an ordered complex Banach
space X that arises as the complexification of a real Banach lattice X, ac-
cording to Definition 2.85, equipped with the norm (2.83).

We observe that if A is a positive operator between real Banach lattices
X and Y then, for z = x + iy € X, we have

(Azx)cos 0 + (Ay)sinf = A(z cosf + ysinf) < Alz|
and therefore |Acz| < A|z|. Hence for positive operators

[Aclle = IIA]l (2.84)
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There are examples, where | A|| < ||A¢||c, contrary to the previous complexi-
fication norm (see [2, Problem 3.2.9]).

Note that the standard L,(f2) and C({2) norms are of the type (2.83).
These spaces have a nice property of preserving the operator norm even for
operators which are not necessarily positive. To show this for L,(£2), let us
note that, in a similar way to (2.82),

/ lacos 0 + Bsin 07d0 = o+ iB|? / | cos(8 — 00)|Pdf = Ola + ifIP,
where © = [" | cos 0[Pdf. Therefore

Ac2lz = [ 1(A0)@) + il @) de
(]
= @_1// |(Az)(w)cos O + (Ay)(w)sin 8|PdOdw
2 —7

:@*1//\(A(:ECOSH+ysin9)(w)|pdwd0

-7 2

<jalp [ (07 [letw)cost + yllsinopas | d = A2
(9] —T

For C(£2) this follows by (2.82) as we can interchange the order of taking
suprema.

2.2.6 Series of Positive Elements in Banach Lattices

In this subsection we prove two results which are series counterparts of the
dominated and monotone convergence theorems in Banach lattices.

Theorem 2.91. Let (z,(t))nen be a family of nonnegative sequences in a
Banach lattice X, parameterised by a parametert € T C R, and let tg € T

(i) If for each n € N we have x,(t)] and limy_,¢, ,(t) = 2, in norm, then

o0 o0

lm > z,(t) = > zp, (2.85)
t—to n=p n=0

irrespective of whether the right-hand side exists (with understanding

that for nonnegative terms Y - x, = sup{Ziv:Oxn; N € N} and

130 oznll = sup{||zg:0mn||; N € N}, in the latter case the equality

should be understood as the norms of both sides being infinite).
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(1) If limy 4, ¢ (t) = @, in norm for each n € N and there exists (ap)nen
such that x,(t) < a, for any t € T,n € N with > ||a,| < oo, then

lim > z,(t) = > zp. (2.86)
t—to n=p n=0

Proof. (i) Assume first that Y jz,, € X. Then for any ¢ we have 0 <

oo ozn(t) < 3007 yzn and hence each series Y~ (x,(t) is summable. More-

over for any e there is N such that [[3°07 v @, (0] < 13202 vyl < €/3

for any t € T. Then, with fixed finite N, we can select ¥ < tp in such a way

that for all n < N and ¢ <t < tp we have ||z, — z,(t)| < ¢/3(N + 1) hence,

o0 &)
> an(t) = Yo an| <€
n=0 n=0
for all ¢ < t < to. Assume now that ||>° 2 jz,|| = oo. The only nontrivial

case is if all the series > ° jz,(t) € X. Thus for every M there is N such
that |32 2, | > M + 1. Consider now

N N N N N
122 an (@ =1 >0 (@n(t) = 2n) + > anll 2 |[ 20 @nll = | 22 (20 () —za)ll] -
n=0 n=0 n=0 n=0 n=0

N is finite, and thus the second term can be made smaller than 1/(N + 1) for
t sufficiently close to to. Hence

155 o)) 1| a0 2

for ¢ sufficiently close to ¢ty and because M is arbitrary, we get

(ii) The proof is similar to the above so we only sketch it. Let x,,(¢) converge to
ZTp ast — to with 0 < z,,(t) < a,, and Zfbozoan converges. From the closedness
of the positive cone, Proposition 2.73(1), we get z,, < a,. Then

132 (o — )] < 15 @ — 2a@) + ] 5 (@0 — 2a()]
n=0 n=0 n=N+1

<1 (o= o) +2] 5wl

n=N+1

The second term can be made smaller than € by the convergence of the series
and the first, for now fixed IV, by the termwise convergence. 0O
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2.2.7 Spectral Radius of Positive Operators

Let A € £(X). From the definition of the spectral radius of an operator, for-
mula (2.59), and the closedness of the spectrum, we see that r(A) € {|A\|; X €
o(A)}. As a more serious application of the theory of Banach lattices, here we
prove that if A is a positive operator, then its spectral radius is an element of
the spectrum of A; that is, 7(A) € o(A). This result will be of fundamental
importance in the perturbation theory; see Theorem 5.10. The presentation
here is based on [70, pp. 177-179]. We start with the lemma.

Lemma 2.92. Let (ay)nen be a sequence of positive real numbers such that

F(z) = ianzn (2.87)

converges for |z| < R. If F(z) can be analytically continued to a disk |z — R| <
Ry, then (2.87) converges in |z| < R+ Ry.

Proof. We have

d* d* > nl
i —lim > — a7, 2.
lim nZ::k = k)!anr (2.88)

Because the terms of the series are nonnegative, we have monotone conver-
gence of each term nla, 7" */(n — k)! 1 nla, R"~*/(n — k)! and thus, by The-
orem 2.91, of the whole series.

Therefore, returning to (2.88), we see that

P Ry = S ek (2.89)
dzF = (- k)!an ' '

From the assumption on analytical continuation of F' we can write the expan-
sion of F for |z — R| < R; as

Py = 55 ($ ) R

n=~k (TL -

so that | N
e e n! x
Z ( Z a Rnk) s
n=0 \n=k (n - k)' "

is absolutely convergent, in particular, for 0 < z < R;. But, using positivity

of terms, we have by changing order of summation

n nl ) )
an S ’l,(n e
=0

x© pl N b
—a, R —
i=0 (nX—:i(n_i)!al > il

so that the series converges for |z| < R+ Ry. O

io: an(x +R)" =

n=0

18 ||M8
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Theorem 2.93. If A € L(X) is a positive operator, then r(A) € o(A).

Proof. Denote r = r(A). For |A\| > r we have, by (2.58),

R(ALA) = S A0 A, (2.90)

n=0

To simplify calculations, let us denote F(z) = R(z71,A), 2 = 1/ so that
F(z) is analytic for |z| < 1/r. If r € p(A), then, because p(A) is an open set,
R(X, A) is analytic in some neighbourhood of r so that F(z) is analytic in
some open neighbourhood of 1/r. Now take 0 <z € X and 0 < f € X* and
consider the scalar analytic function

F(z)= > 20D < A"a>
n=0

F has positive coefficients, converges for |z| < 1/r, and is analytic in some
neighbourhood of z = 1/r that is independent of z and f, so that, by Lemma
2.92, the series converges for |z| < 1/r" with 1/r’ > 1/r independent of f and
x. By decomposing arbitrary x € X and f € X* into positive and negative and
real and imaginary parts, we obtain convergence for any x € X and f € X*.
Hence, using Lemma 2.31, we see that the series Y -~ 2" "1 A" converges for
|z| < 1/r". But this means that the series (2.90), defining the resolvent of A,
converges for |A| > 7’ with ' < r = r(A), contrary to Theorem 2.33 (ii). O

Another consequence of Lemma 2.92 is a similar result on the Laplace
transform usually referred to as the Pringsheim—Landau theorem. It is used
to characterize growth rate of positive semigroups in Theorem 3.34.

Theorem 2.94. Let X be a Banach lattice and 0 < f € Ly 0(R4, X). If
—00 < abs(f) < +oo (see (2.41)), then the Laplace transform Lf cannot be
analytically continued to a neighbourhood of abs(f).

Proof. Set 3 := abs(f). Replacing f by e P f(t) we can assume 3 = 0. By
the same argument as that used in Theorem 2.93, we see that if Lf could be
extended analytically to some neighbourhood of 0, then, for some € > 0, the
Taylor series for L(A)f at, say, A =1

oo k
coys = 5 ETW o g
k=0 .

would have the radius of convergence equal to 1 + 2¢. In particular, it would
absolutely converge at A = —e. Hence for all g € X* we would have

& (e 1)* r —t
<.Ll=0)f> = ¥ O/(—t)ke <g, f(t) > dt
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:/ -t €+ ) <g,f(t)>dt:/e“ <g, f(t)> dt
k=0
0 0

— all)m <g,/e€tf(t)dt>.
0

If ¢ > 0, the change of order of integration and summation follows from the
Fubini theorem as all terms are positive and for arbitrary g we carry out these
operations for g4 and g_ separately. Thus, by the Banach—Steinhaus theorem,

a

sup /eétf(t)dt ;a €Ry » < H4o0.
0

Define F(7) := [ e f(t)dt and take any A € C with R\ > —e. Integrating
by parts we obtain

a a

[ = trmp @)+ (vt [ E@n,

0 0

Because || F(t)|| is bounded and (X + €) > 0, the right-hand side converges,
which gives abs(f) < —e, contrary to the assumption that abs(f) =0. O



3

An Overview of Semigroup Theory

In this chapter we are concerned with methods of finding solutions of the
Cauchy problem.

Definition 3.1. Given a complexr Banach space and a linear operator A with
domain D(A) and range ImA contained in X and also given an element
ug € X, find a function u(t) = u(t,ug) such that

1. u(t) is continuous on [0,00) and continuously differentiable on (0,00),
2. for each t > 0, u(t) € D(A) and

u'(t) = Au(t), t>0, (3.1)
3.
tlirél+ u(t) = ug (3.2)

in the norm of X.

A function satisfying all conditions above is called the classical (or strict)
solution of (3.1), (3.2).

3.1 Rudiments

3.1.1 Definitions and Basic Properties

If the solution to (3.1), (3.2) is unique, then we can introduce the family
of operators (G(t))i>0 such that u(t,ug) = G(t)uo. Ideally, G(¢) should be
defined on the whole space for each ¢ > 0, and the function ¢ — G(t)uo
should be continuous for each ug € X, leading to well-posedness of (3.1), (3.2).
Moreover, uniqueness and linearity of A imply that G(t) are linear operators.
A fine-tuning of these requirements leads to the following definition.

Definition 3.2. A family (G(t))i>0 of bounded linear operators on X is called
a Cy-semigroup, or a strongly continuous semigroup, if
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(i) G(0) = I;

(i) G(t + s) = G(t)G(s) for allt,s > 0;

(i4i) lim;_,o+ G(t)x = x for any z € X.

A linear operator A is called the (infinitesimal) generator of (G(t))i>0 if

Ay — Ly CWE -2
h—0+ h

with D(A) defined as the set of all x € X for which this limit exists. Typically
the semigroup generated by A is denoted by (Ga(t))i>o0-

: (3.3)

We note that properties (ii) and (iii) and the Banach—Steinhaus theorem show
that any Cy-semigroup is bounded in the operator norm over any compact
interval of R .

Remark 3.3. For semigroups, the existence of a one-sided limit at some tg > 0
yields the existence of the limit. In fact for 0 < h <ty we have

G(to — h)x — G(tg)x = G(to — h)(x — G(h)z),

and the existence of limit of the right-hand side follows from the local bound-
edness of (G(t))¢>o in the operator norm, which was mentioned above. Thus,
in particular, condition (iii) of Definition 3.2 yields that G(-)z € C°([0,0), X)
for any x € X. Also, one-sided differentiability with respect to ¢ of G(t)x for
some x € X,ty > 0 is sufficient for its differentiability.

If (G(t))t>0 is a Cp-semigroup, then the local boundedness and (ii) lead to
the existence of constants M > 0 and w such that for all t > 0

IG(@®)llx < Me! (3.4)

(see, e.g., [141, p. 4]). We say that A € G(M,w) if it generates (G(t))i>o0
satisfying (3.4). The type, or uniform growth bound, wo(G) of (G(t))i>0 is
defined as

wo(G) = inf{w; there is M such that (3.4) holds}. (3.5)

Let (G(t))i>0 be a semigroup generated by the operator A. The following
properties of (G(t));>0 are frequently used, [141, Theorem 2.4].

(a) Forz € X

Jim + / G(s)zds = G(t)z. (3.6)
(b) For z € X, fot G(s)xds € D(A) and

A | G(s)xds = G(t)x — x. (3.7)
/
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(¢c) For z € D(A), G(t)x € D(A) and

%G(t)x = AG(t)x = G(t)Ax. (3.8)
(d) For z € D(A),
Gt)r — G(s)x = /G(T)AxdT = /AG(T)xdT. (3.9)

From (3.8) and condition (iii) of Definition 3.2 we see that if A is the generator
of (G(t))>0, then for x € D(A) the function ¢t — G(¢)x is a classical solution
of the following Cauchy problem,

Owu(t) = A(u(t)), t>0, (3.10)
tl_i)I(I)l+ u(t) = x. (3.11)

We note that ideally the generator A should coincide with A but in reality
very often it is not so. In fact, a large part of the theory developed in this
book is concerned with finding a relation between A and its realisation A
which generates a semigroup. Such problems are addressed in Subsection 3.2.1,
Section 3.6, and throughout Chapters 5-10. However, for most of this chapter
we are concerned with solvability of (3.10), (3.11); that is, with the case when
A of (3.1) is the generator of a semigroup.

We noted above that for € D(A) the function u(t) = G(t)z is a classical
solution to (3.10), (3.11). For x € X \ D(A), however, the function u(t) =
G(t)z is continuous but, in general, not differentiable, nor D(A)-valued, and,
therefore, not a classical solution. Nevertheless, from (3.7), it follows that the
integral v(t) = fot u(s)ds € D(A) and therefore it is a strict solution of the
integrated version of (3.10), (3.11):

ow=Av+zx, t>0
v(0) = 0, (3.12)

or equivalently,

u(t) = A/u(s)ds + . (3.13)

0
We say that a function u satisfying (3.12) (or, equivalently, (3.13)) is a mild
solution or integral solution of (3.10), (3.11).

Proposition 3.4. Let (G(t))i>0 be the semigroup generated by (A, D(A)).
Then t — G(t)x, x € D(A), is the only solution of (3.10), (3.11) taking
values in D(A). Similarly, for x € X, the function t — G(t)x is the only mild
solution to (3.10), (3.11).
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Proof. Let t — u(t) € C°([0,0), X)NC*((0,00), X), with u(t) € D(A) for all
t, satisfy u/(t) = Au(t) for ¢ > 0. Forming ¢(s) = G(t — s)u(s) for 0 < s < t,
we see that, by (3.8), the function ¢(s) is differentiable with

Lo(s) = Gt — 5)(u/(5) — (Au)(s)) = 0. (3.14)

Taking o > 0 and 8 < t we find G(t — a)u(a) = G(t — B)u(F) and passing to
the limit & — 0 and § — ¢ (with the help of boundedness of (G(t)):>0 in the
operator norm), we find G(¢)u(0) = u(t), which shows that u is given by the
semigroup.

Passing to mild solutions, if u were another such solution, then its in-
tegral t — fot u(s)ds would be a classical solution to (3.12) and, because

t— fot G(s)zds is also a solution, we would have, by the previous part,

t t

/ u(s)ds = / G(s)ads

0 0
giving u(t) = G(t)x. O

Thus, if we have a semigroup, we can identify the Cauchy problem of which
it is a solution. Usually, however, we are interested in the reverse question,
that is, in finding the semigroup for a given equation. The answer is given
by the Hille-Yoshida theorem (or, more properly, the Feller-Miyadera—Hille—
Phillips—Yosida theorem).

3.1.2 Around the Hille-Yosida Theorem

Theorem 3.5. A € G(M,w) if and only if

(a) A is closed and densely defined,
(b) there exist M > 0,w € R such that (w,00) C p(A) and for all
n>1,\>uw,
M

10T = A7) < 5=

(3.15)

The proof can be found in almost any textbook on the theory of semigroups
so we refrain from giving it here. However, we mention a few salient points of
it which are relevant to the topics discussed further in the book.

If A is the generator of (G(t))¢>0, then properties (i) and (ii) follow from
the formula relating (G(t));>o with R(X, A). Precisely, [141, Theorem 1.5.3],
if A > wp(G), where wo(G) is defined by (3.4), then A € p(A) and

RO\, A)z = / MG (t)wdt (3.16)
0
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is valid for all z € X.

The converse is more difficult to prove. The first step is to show that it
is sufficient to take M = 1 and w = 0 in (3.15). The former is achieved by
renorming the space X (a nontrivial exercise), whereas the latter by shifting
A: A — wI generates {e “*G(t)}+>0 if and only if A generates (G(t))t>o-

After these manipulations condition (3.15) reads

(A=A~ < % (3.17)

and the semigroup (G(t))¢>o is supposed to satisfy
1G(@)x]| < [l (3.18)

for all t > 0, and x € X. Semigroups satisfying (3.18) are called semigroups
of contractions.

The starting point of the second part of the proof is the observation that
if (A, D(A)) is a closed and densely defined operator satisfying p(A) D [w, 00)
for some w and [|AR(X, A)|| < M for some M > 0 and all A > 0, then

(i) for any z € X,
)\lim AR\, Az =z, (3.19)
(ii) AR(\, A) are bounded operators and for any « € D(A),

lim AMAR(M A)x = Azx. (3.20)

A—00

It was Yosida’s idea to use the bounded operators
Ay = MAR(M A), (3.21)

as an approximation of A for which we can define semigroups (Gx(t))i>o0
via the exponential series (1.7). He was able to prove that for any z € X,
G (t)x converges uniformly on bounded intervals as A — oo to a Cp-semigroup
generated by A.

Another widely used approximation formula, which can also be used in
the generation proof, is the operator version of the well-known scalar formula

at : ta -
e = lim(1— — .
n—oo n

Precisely, [141, Theorem 1.8.3], if A is the generator of a Cp-semigroup
(G(%))¢>0, then for any z € X,

G(t)r = lim (I— :;A) 7n;v = lim (%R <E7A>)nx (3.22)

n— oo n—oo t

and the limit is uniform in ¢ on bounded intervals.
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Ezample 3.6. Suppose that A generates a semigroup (Ga(t))¢>o and consider
B =aA+ b, where a > 0 and b € C. Then

R(\,B) = %R (/\b,A)

a

and the terms of the sequence in (3.22) for the operator B can be written as

n_/n n b\ k ([ k Mkt (K o
(77 (72)) o= ((1 * k> at”t <at’A>> ( a (H‘)) "
where k = n — bt, t > 0 fixed. Because the term ((k + bt)R (k/at, A)/at)" z

converges to by (3.19), we can use Corollary 2.12 to obtain

Gp(t)r = lim (%R (%, B))n z = eG4 (at)z. (3.23)

n—oo
The semigroup (Gg(t))i>o is often referred to as the rescaled semigroup.

Remark 3.7. As we noticed earlier, a given operator (A4, D(A)) can generate
at most one Cy-semigroup. Using the Hille-Yosida theorem we can prove a
stronger result which is useful later.

Proposition 3.8. Assume that the closure (A, D(A)) of an operator (A, D)
generates a Co-semigroup in X. IfiB,D(B)) 18 also a generator, such that
B|p = A, then (B,D(B)) = (A, D(4)).

Proof. Because (B, D(B)) is a generator, it is a closed extension of (A, D).
However, (A, D(A)) by definition is the smallest such extension so that
(4,D(A)) C (B,D(B)). From the Hille-Yosida theorem both operators A\ — A
and Al — B are invertible for sufficiently large A hence, by Proposition 2.2, we
obtain B=A. O

Without the assumption that the closure of A is a generator there may be
infinitely many extensions of a given operator which generate a semigroup. To
see this it is enough to consider the semigroups generated by the realizations
of the Laplacian subject to Dirichlet, Neumann, or mixed boundary conditions
— all the generators coincide if restricted to the space of C§° functions.

3.1.3 Standard Examples

Let us consider three relatively easy examples, variants of which appear fre-
quently throughout the book.

Ezample 3.9. The maximal multiplication operator (M,, D(M,)) was intro-
duced in Example 2.38. With the function a we associate the exponential e'®.
Because the exponential function z — e® is continuous, the composition e*®
is measurable on 2 for any fixed ¢. If we additionally assume
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ess sup Ra(x) = sup{RA; A € aes5(2)} < +00, (3.24)
xef

then e'® is essentially bounded on 2. We define the multiplication semigroup
by
Go(t)f :=e'f, feL(2),t>0. (3.25)

Because e'* € Lo (§2), from Example 2.38 we know that this is a family of
bounded operators in L, ({2), having properties (i) and (ii) of Definition 3.2.
To prove strong continuity, we note that e!*f — f almost everywhere as
t — 07 and, because ||e"||o < exp (tsup{RA; A € acss(2)}), we obtain

lim [e'f — f|, =0
Jim fle™f = £l

by the dominated convergence theorem. Thus (G4(t)):>0 is a strongly contin-
uous semigroup. It is an interesting observation, [79, Proposition 1.4.12], that
if (G(t))1>0 is a multiplication semigroup, that is, G(t)f = b(t)f for some
bounded measurable function b, then b = e'® for a measurable function a
satisfying a.ss(£2) < +oo.

We conclude this example by showing that (M,, D(M,)) is indeed the
generator of (G4(t))t>0. Denote by A the generator of (G,(t))i>0 and let
f € D(A). Then

T _ap mr@

lim
t—0t

and there is a sequence (t,)nen such that

_etf—f
lim ——

tn,—0t tn

=Af,

almost everywhere in £2. However, for almost any x € §2, t — ¢'*®) f(x) has
a classical derivative at ¢t = 0, equal to a(x) f(x) and thus [Af](x) = a(x) f(x)
for almost any x € 2. Thus, D(A) C D(M,). However, A\ — A and \I — M, are
invertible for sufficiently large A\ by Theorem 3.5 and Example 2.38 combined
with assumption (3.24), respectively. Proposition 2.2 then yields A = M,.

Ezample 3.10. Let X = L,(I), where I is either R or R;. In both cases we
can define a (left) translation semigroup by

(G)f)(s):=f(t+s), feX, ands,tel. (3.26)

The semigroup property is obvious. Next, for each ¢ > 0, we have
IG@)fIIF = / [f(t+s)|Pds < /If(?")l”dr = lI£15,
I I

where, in the case I = R, we have the equality. Hence (G(t));>0 satisfies
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GO <1, (3.27)

and so (G(t)):>0 is a semigroup of contractions.

To prove that (G(t))¢>o is strongly continuous, we use an approximation
approach. First let ¢ € C5°(I). It is uniformly continuous (having compact
support) hence for any € > 0 there is § > 0 such that for any s € I and
0<t<é,

6t +5) — 6(s)| < €.

Thus,
/|¢> t45) — 6(s)Pds < Mye,

where My is the measure of some fixed neighbourhood of the support of ¢
containing supports of all s — ¢(¢t+s) with 0 < t < §. Because C§°([) is dense
in L,(I) for 1 < p < oo (see Example 2.1), (3.27) allows us to use Corollary
2.13 to claim that (G(t)):>0 is a strongly continuous semigroup.

We can now use Theorem 2.39 to claim that there is a representation
(t,s) — [G(t)f](s) of G(t)f which is measurable on Ry x I and such that
the Riemann integral of ¢ — G(t)f coincides for almost every s € I with
the Lebesgue integral of [G(¢) f](s) with respect to t. Note that in this case it
follows directly as the composition of a measurable function with (¢, s) — t+s
is measurable, [149, p. 273], but in general it is not that obvious. Hence,
from now on we do not distinguish between a vector-valued function and its
measurable representation.

Let us denote by (A, D(A)) the generator of (G(t));>0 and let g := Af €
L,(I). Thus, A f :== h"Y(G(h)f— f) — g in L,(I). Taking a compact interval
[a,b] C I, we have

b

b
/ (Anf(s) — g(s))ds| < / Anf(s) — g(s)lds < b— a9 A f — gllz, )

a

< b= al | Anf = gllz,m

SO
b

b
Jim [0 ) = f(s)ds = [ g(s)ds,

On the other hand, we can write

b+h a+h

/h F(s+h) — f(s))ds:h*/f(s)ds—h*/f(s)ds
b a

where the terms are the difference quotients of the function f:o f(s)ds at
t = a and t = b, respectively. Because f is integrable on compact intervals,
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ftto f(s)ds € AC(I) and its derivative is almost everywhere given by the inte-
grand f; see Example 2.3. By redefining f on a set of measure zero, we can

write
xT

f(x) :f(a)+/g(s)ds, z el

Thus, we see that A C T, where T is the maximal differential operator on
L,(I); see Example 2.37. From this example we know that T is invertible, so
Proposition 2.2 gives A =T, as in Example 3.9.

We note that the identification of the generator of the translation semi-
group in Example 3.10 can be done by finding the resolvent through the
Laplace transform (3.16):

RO\ 4)/](s) = / NG f(s)dt = / et + s)dt = / e (y)dy,
0 0 s

for A > 0, where the conversion of the Riemann integral of the semigroup into
the Lebesgue integral follows from the discussion above. Comparing (2.64)
with the formula above shows that R(A\, A)f = R(\,T) f for all f € L,(I) and
hence A =1T.

We also note that Theorem 3.5 ensures that T' generates a semigroup of
contractions as T' is closed and densely defined and estimate (2.65) is the
same as (3.15) with M = 1 and w = 0. However, it does not provide any
representation formula for the semigroup, though in this simple case one can
directly solve the Cauchy problem u; = u},u(0,s) = f(s).

Ezample 3.11. The resolvent of the differential operator T3 in L, ([0, 1]) defined
on the domain D(Ty) := {f € D(T); f(1) = 0} (see Example 2.37) satisfies
estimate (2.63) which gives (3.15) if R\ > 0. Therefore T} is also the generator
of a semigroup of contractions, say (G, (t))¢>0. Considerations similar to the
previous example show that it is given by

Grfl) = {0 sy =t (329

This shows that one should be careful when looking at a semigroup generated
by A as the exponential e!4 because, in this particular case, e*™* vanishes for
t> 1.

3.1.4 Subspace Semigroups

There are several ways of constructing new semigroups using a given semi-
group (G(t))i>0 as the starting point (see, e.g., [79, pp. 59-64]). In Example
3.6 we have already seen the so-called rescaled semigroup. In this subsection
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we consider a particularly important, for further applications, case of restric-
tions of (G(t))¢>0, acting in a Banach space X, to a subspace Y which is
continuously embedded in X and which is invariant under (G(t));>0. The
restriction (Gy (t))i>0 of (G(t))1>0 to Y is obviously a semigroup but not nec-
essarily a Cyp-semigroup. If, however, it is strongly continuous, then we can
identify the generator of (Gy (t)):>0 as the part in Y of the generator A of
(G(%))e>0, see (2.12).

Proposition 3.12. Let (A, D(A)) generate a Cy-semigroup (G(t))i>0 in a
Banach space X and let Y be a subspace continuously embedded in X, in-
variant under (G(t))i>0. If the restricted semigroup (Gy (t))i>o is strongly
continuous in Y then its generator is the part Ay of A in'Y.

Moreover, if Y is closed in X, then (Gy (t))t>0 is automatically strongly
continuous and Ay is the restriction of A to the domain D(A)NY.

Proof. Denote by (C, D(C)) the generator of (Gy (t));>0. Because Y is con-
tinuously embedded in X, C' C Ay by (3.3). To prove the reverse inclusion,
let A € R be large enough for R(A, A) and R(\,C) to admit the integral
representation (3.16):

R\, C)y = /e—MG(t)ydt =R\ Ay, yev.
0

Taking « € D(Ay), we obtain
x =R\ A)A — A)x = R(\,C)(AI — A)z € D(C)

and hence D(Ay) = D(C).

If Y is closed, then the convergence in Y is induced by the norm of X and
therefore (Gy (t))i>0 is strongly continuous whenever (G(t)):>o is. Also, the
limit Ay = lim,_o+ b1 (G(h)y — y) of (3.3) exists for y € Y if and only if
y € D(A)NY and hence it belongs to Y by the closedness of Y. O

In some cases the assumption that Y is invariant with respect to the
semigroup (G(t)):>o can be relaxed.

Proposition 3.13. Let B be a closed operator and Y = D(B) be normed
with the graph norm. If A € G(M,w) generates a semigroup (G(t))i>0 and
if B commutes with the resolvent R(\, A) for some A with R\ > w, then B
commutes with (G(t))i>0 and (Gy (t))i>0 is a Co-semigroup in'Y satisfying
Gy (®)lly < IG@)I]-

Proof. By definition, B commutes with R(\, A) if and only if for each f €
D(B) we have R(A\,A)f € D(B) and BR(A\, A)f = R(X, A)Bf; see (2.13).
Thus, for any n we have BR™(\, A)f = R"(\, A)Bf. In fact, by induction we
easily have that R™(\, A)f € D(B) for any n € N provided f € D(B) and the
commutativity follows by iteration. Hence for any N € N and f € D(B),
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N N
B (A= w) RO\ A" f = Y (A= )" R(\, )" B,
n=0 n=0

Taking limits of both sides as N — oo and using closedness of B we obtain,
by (2.55), that R(u,A)f € D(B) and BR(u,A)f = R(u, A)Bf, provided
I — Al < ||R(A\, A)||~L. By analytic continuation we can extend this equality
to the connected component of the resolvent set p(A) and, in particular, by
(3.31) to the half-plane R\ > w. Thus, for any ¢t > 0 and f € D(B), we obtain

n_/n n n_/n n
(37 (34)) 1= (5r(54)) 5r
Using again closedness of B and (3.22) we see that if f € D(B), then also
lim (nR(n/t,A)/t)" f € D(B) and

BG(t)f = G(t)Bf.
It is obvious that (Gy (t)):>0 is a Co-semigroup in Y and because

GO fllps) = IGOLI+IBGE LI < IGONASI+IBLIN = 1GOOI flIpcs)
we obtain |Gy (t)|ly < [|G(t)

. O

3.1.5 Sobolev Towers

We briefly describe here a somewhat related construction (see [79, pp. 124—
129]) which allows us to restrict semigroups to the domains D(A™) and, more
important, extend them and their generators to larger spaces. The latter will
be needed in applications to identify other extensions of generators; see Corol-
lary 4.10, Lemma 6.18, and Corollary 6.19. To simplify the notation, we as-
sume that the semigroup (G(¢))¢>0 generated by A is of negative type so that
A=l € £(X). This can always be achieved by rescaling the semigroup. Then,
for each n € N, we define a new norm on D(A"™) by

[e]ln = [|A™]. (3.29)

The space X,, = (D(A™), || ||») is called the associated Sobolev space of order
n. The introduced norm is equivalent to the graph norm due to the invertibility
of A so X,, are Banach spaces. Denoting by G, (t) the restriction of G(t)
to X, we can prove that (G,(t))i>o are Cp-semigroups in X,,, generated
by the parts A, of A in X,, which are the restrictions of A to D(A,11).
Thus, (A,, D(A,)) = (A, D(A"™1)). We observe that each X, is densely
embedded in X,, but also, via A,,, isometrically isometric to X, 1.

In this construction we obtained X, 11 from X,, but we also can invert the
procedure and obtain X, as the completion of X, 11 with respect to the norm

Iz lln = 14734l
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Hence, we can construct new spaces of ‘negative’ order using the following
recursion. Starting from Xy = X for each n € N and X_,, 11 we define

Izl -n = Az 2] (3.30)

and call the completion of X_,, 1, with respect to this norm, the associated
Sobolev space of order —n, denoting it X_,,. The continuous (by density) ex-
tensions of the operators G_,,41(t) from X_,, 11 to X_,, we denote by G_,,(t).
For example, the space X_; is obtained as a completion of X with respect to
the norm ||z||_; = ||A~ x||. This construction leads to the spaces and oper-
ators having properties analogous to those described above. Namely, for any
m > n € Z, the following statements are valid.

(i) Each X, is a Banach space containing X, as a dense subspace.

(i) The operators Gy, (t) form a Cy-semigroup (G, (t))i>0 on X,,.

(iii) The generator A,, of (Gy(t))i>0 has domain D(A,) = X,4+1 and is the
unique extension by density of A,, : X;n+1 — X, to an isometry from
X,41 onto X,,.

In particular, the generator (A_q, X) of (T_1(¢)):>0 is the unique extension
by density of (A4, D(A)).

Ezxample 3.14. As a simple example that is useful in the sequel we consider
the semigroup (G(t))i>0 on X = Xy = L1(£2,dp) generated by the multi-
plication operator by a function —a, where a is assumed to be measurable
and nonnegative almost everywhere on (2; see Example 3.9. Because in gen-
eral 0 € o(M_,), we use Au = (I — M_,)"'u = (1 + a)"'u. We have then
1+ a > 0 almost everywhere on {2 and

Xn={ue Lo(£2,dp); 1+a)"ue Li(2,dn)}, nelZ.

Thus, in particular, X_; consists of these measurable functions which are
integrable after multiplication by (1 + a)~?.

3.1.6 The Laplace Transform and the Growth Bounds of a
Semigroup

It is important to note that the Hille—Yosida theorem is valid in both real
and complex Banach spaces with the same formulation. Thus if A is an op-
erator in a real Banach space X, generating a semigroup (G(t));>0, then its
complexification will generate a complex semigroup of the same type in the
complexification X¢ of X equipped with the norm (2.80). This allows us
to extend (3.16) to complex values of \. Precisely, [141, Remark 1.5.4], if
RA > wo(G), then A € p(A) and

RO\ A)z = / MG (t)wdt (3.31)
0
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is valid for all z € X. The integral in (3.31) is absolutely convergent. Moreover,
iterations of the resolvent give the following formula,

oo

/ e MG adt, (3.32)
0

R\, A"z = %;;11%(%%1) = ﬁ

valid for all x € X and this yields the estimate

IR\, A)"|| < RA > wo(G). (3.33)

M
(RA — wo(G))™’
An immediate consequence of the above considerations is that the spectrum
of a semigroup generator is always contained in a left half-plane. Let us recall
that the location of this half-plane is given by the spectral bound

s(A) = sup{RX; A € g(A)}, (3.34)

defined in (2.61). For semigroups generated by bounded operators and, in
particular, by matrices, Liapunov’s theorem, [112] and [79, Theorem 1.2.10],
states that the type wo(G) of the semigroup is equal to s(A). This is no
longer true for strongly continuous semigroups in general; see for example,
[141, Example 4.4.2] or [136, Example A-II1.1.3], where it is shown that the
translation semigroup [G(¢)f](s) = f(t + s) on the space X = L,(R;)N E,
where E is the weighted space E := {f € L,(R4), e*ds}, whose generator A
is the differentiation operator, satisfies wo(G) = 0 and s(A) = —1.
Thus at this moment we only have the obvious estimate

s(A) € wy(G) < +o0. (3.35)

The relation between the spectral properties of the generator and the long-
time behaviour of the semigroup has been a major subject of research in
semigroup theory over the last several years and the results are summarized
in several monographs, such as [139, 79, 12] to mention but a few. However,
most of that research does not directly pertain to the topic of the book so we
shall mention just a few results of direct relevance.

That the type wo(G) might be a rather crude estimate of s(A) can be
expected because the former is determined by the absolute convergence of
the Laplace integral and the integral converges as an improper integral in a
possibly larger half-plane A > abs(G); see (2.46). At this moment we do
not know, however, whether the Laplace integral still determines there the
resolvent of A. This question is addressed in the next proposition.

Proposition 3.15. If, for some A € C,

T

Byz:= lim [ e MG(t)zdt (3.36)

0
exists for all x € X, then X € p(A) and Byx = R(\, A)x for all z € X.
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Proof. By replacing G(t)z by e~ *G(t)x and using Example 3.6 we can assume
A = 0. Accordingly, denote By by B. Thus

1
—(G(h)Bx — Ba) = -

S =

h
/G(s)mds — -
0

by (3.6). Hence Bx € D(A) and ABx = —z for all x € X.
Next suppose ¢ € D(A). Then

T

BAz = lim [ G(t)Azdt = lim G(r)z —z

0

by (3.7) and hence y := lim, .. G(7)z exists. Because lim, .o [ G(t)xdt
also exists, we must have y = 0 and BAz = —x for any « € D(A). Because A
is closed, Proposition 2.18 implies 0 € p(A) and B = —A~! = R(0,A). O

Thus we see that {\ € C; RA > abs(G)} C p(A4). Tt is still not clear
whether s(A) = abs(G). We can prove, however, that abs(G) controls the
growth of classical solutions of (3.10), (3.11), that is, of the solutions emanat-
ing from € D(A). To make this concept precise, we define the growth bound
w1 (G) by

w1 (G) =inf{w; thereis M such that ||G(t)z|| < Me**||z||p(a), x € D(A),t > 0}.
(3.37)
Clearly, w1 (G) < wo(G).
Proposition 3.16. For a semigroup (G(t))i>0 we have
w1(G) = abs(@). (3.38)

Proof. Let us fix w > wi(G) and take any A € C with RA > w. We begin
by showing that for such A the operator B, defined by (3.36), exists. Let us
choose M in such a way that ||G(t)z| < Me“*||z| p(a), as in (3.37). First let
2 € D(A). Then for any 0 < a < b we have

b b

/e*“G(t)zdt < /e*thG(t)det

a a

w—RNN)a w—RNA)b
RN — (e( o — ¢ ) ) 2] D(ay-

b
< M/e(“’_%x)thHD(A)dt =
a
If a,b — oo, then the right hand converges to 0 and thus Bz exists. Second,

we consider the case x = (Al — A)y for some y € D(A). Because A is closed
and A — Al generates (e *G(t))¢>0 we obtain, by (3.7),
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T

/ MGt = (M — A)

0

*”G (tyydt =y — e M G(1)y,

o\

and, using y € D(A) and R\ > w, we obtain

T

lim [ e MG(t)r =y — lim e *G(r)y = v. (3.39)

0

Finally, from the resolvent identity (2.54), we obtain that for z € X,

so that any * € X can be written as a sum of elements from D(A) and
Im(A — A); thus, by the two cases considered already, Bz exists for any
x € X. This shows that w > abs(G) and thus abs(G) < wi(G).

To complete the proof we have to show w;(G) < abs(G). Let w > abs(G)
and R\ > w. Then R(A\, A)x = Byx for any x € X and, because this time we
know that the left-hand side of (3.39) converges to y = R(\, A)z, we obtain

lim e " G(T)R(\, A)x =0,

T—00

and this shows w > wy(G). Therefore abs(G) > w1 (G). O

Unfortunately, in [169] (see also [139, Example 1.2.4]), the author con-
structed a semigroup with abs(G) = wi1(G) = 1 and s(A) = 0. Hence, in
general, s(A) does not provide full information about the long-time behaviour
of even classical solutions. However, as we show later, for positive semigroups
we have w1 (G) = s(A) and for positive semigroups in L,-spaces it is possible
to prove that s(A) = wo(G).

3.2 Dissipative Operators

Let X be a Banach space (real or complex) and X* be its dual. From the
Hahn—Banach theorem, Theorem 2.4, and Remark 2.6, for every x € X there
exists z* € X* satisfying

<z a>= ||z]* = [la"]%.
Therefore the duality set
J(x) = {z* € X*; <a*,>= ||z||* = ||=*|*} (3.40)

is nonempty for every = € X.
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Definition 3.17. We say that an operator (A, D(A)) is dissipative if for every
x € D(A) there is x* € J(x) such that

R <z, Az><0. (3.41)

If X is a real space, then the real part in the above definition can be dropped.
An important equivalent characterisation of dissipative operators, [141, The-
orem 1.4.2], is that A is dissipative if and only if for all A > 0 and = € D(A),

AL = A)z]| = All]|. (3.42)
We note some important properties of dissipative operators.

Proposition 3.18. [79, Proposition I1.5.14] If (A, D(A)) is dissipative, then
(i) A\I — A is one-to-one for any A > 0 and

_ 1
1T = A) 7 ]| < Sl (3.43)

for all x € Im(AI — A).

(1i) Im(A — A) = X for some XA > 0 if and only if Im(AI — A) = X for all
A> 0.

(iti) A is closed if and only if Im(A — A) is closed for some (and hence all)
A>0.

(iv) If A is densely defined, then A is closable and A is dissipative. Moreover,
ITm(M — A) = Im(\ — A).

Combination of the Hille-Yosida theorem with the above properties gives a
generation theorem for dissipative operators, known as the Lumer—Phillips
theorem ([141, Theorem 1.43] or [79, Theorem I1.3.15]).

Theorem 3.19. For a densely defined dissipative operator (A, D(A)) on a
Banach space X, the following statements are equivalent.

(a) The closure A generates a semigroup of contractions.
(b) Im(AI — A) = X for some (and hence all) A > 0.

If either condition is satisfied, then A satisfies (3.41) for any x* € J(z).

In particular, if we know that A is closed then the density of Im(A\ — A)
is sufficient for A to be a generator. On the other hand, if we do not know
a priori that A is closed then Im(A — A) = X yields A being closed and
consequently that it is the generator.

Ezxample 3.20. The multiplication semigroup of Example 3.25 is a semigroup
of contractions only if a.ss(£2) < 0.

The maximal differential operator T" on L,(I), 1 < p < oo, where I = R
or I = R4, discussed in Example 2.37, is densely defined (C§°(I) C D(T))
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and dissipative by (2.65) and (3.42). Thus the translation semigroups are
semigroups of contractions, which was proved directly in Example 3.10.

Also the differential operator 77 of Example 3.11 is densely defined and dis-
sipative by (2.63). Hence it generates a semigroup of contractions in L, ([0, 1]),
1 < p < co. An interesting feature of this operator is discussed in Example
3.22 below.

We now provide a few variations of the Lumer—Phillips theorem.

Ezample 8.21. If (A, D(A)) is a densely defined operator in X and both A and
its adjoint A* are dissipative, then A generates a semigroup of contractions
in X. In fact, because A is dissipative and closed, Im(I — A) is closed. If
Im(I — A) # X, then for some 0 # 2* € X* we have

0=<z*, 2 — Av>=<z*— A z*, 2>

for all x € D(A). Because A is densely defined, z* — A"z* = 0 and because
A" s dissipative, z* = 0. Hence Im(I — A) = X and A is the generator of a
dissipative semigroup by Theorem 3.19. In particular, dissipative self-adjoint
operators on Hilbert spaces are always generators.

Ezample 8.22. The assumption of the density of D(A) can be circumvented to
a certain extent. If (A, D(A)) is a dissipative operator in X with Im(AI—A) =
X for some A > 0 and possibly D(A) # X, then the part of A4 in Xy =
D(A) (see (2.12)) is densely defined in X, and generates there a semigroup
of contractions.

A classical example in such a case is the realisation of the differential
operator 717 in the space of continuous functions. In fact, define Af = f’ on
the domain D(A) = {f € C*([0,1]); f(1) = 0} in X = C([0,1]). A is a
closed, dissipative, and surjective operator but D(A) is not dense. However,
restricted to the domain {f € C*([0,1]); f(1) =0, f’(1) = 0}, A generates a
semigroup of contractions in Xo = {f € C([0,1]); f(1) = 0}. The semigroup
is again given by the left translation (3.28). However, it cannot be extended
to the whole X as it would not give a continuous function if f(1) # 0.

The situation described in the previous example cannot occur in reflexive
spaces. Precisely speaking, [141, Theorem 1.4.6], if (4, D(A)) is a dissipative
operator on a reflexive Banach space X, such that Im(AI — A) = X for some
A > 0, then it is densely defined.

3.2.1 Application: Diffusion Problems

Some of the most important examples of contractive semigroups which oc-
cur in applications are those describing diffusion processes. Their theory has
been very well developed but is rather tangential to the subject studied in
this book so we discuss them rather briefly, focusing only on those aspects
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that are needed later. Unfortunately, even such a superficial survey requires a
substantial theoretical machinery. A more comprehensive account of various
aspects of the theory can be found in [71, Chapter 1], [82, Chapter 4 |, and
[79, Section VI.5] among others. We begin with basic definitions and facts
from the Sobolev space theory (see, e.g., [4, 93]).

Let {2 be an open subset of R™, possibly equal to the whole space. Recall
that Sobolev spaces W (£2), 1 < p < oo, m € Ny, are defined as

W (02) = {u € Ly(2); 0% € L(2), 0 < |a| < m}, (3.44)

where 0% = 031 ...057, |a| = oy + ...y, is the distributional derivative of
order |«/|, introduced in Example 2.3. Endowed with the norm

1/p

[l = lullwmey == | D 10°ulf g ; (3.45)

0< || <m

the space W;”(Q) becomes a Banach space. In the particular case of p = 2,
(3.45) defines a Hilbert space norm with the corresponding scalar product
given by

(w, V)wyr () = Z /8“u(x)8%(x)dx.
0<|a|<m g,
The space C§°(§2) is continuously embedded in any W,"({2) but the embed-
ding is not dense unless 2 = R™ (or m = 0). However, the closure of C§°({2)
in the W) (§2)-norm, denoted as

o o AW (12)
W' (82) = C=(2) "
is very important in applications through its connection with boundary values
of functions from W(£2).

It is possible to extend the definition of Sobolev spaces to fractional orders
by defining W (§2), where r = m + o, m is an integer, and 0 < o < 1, by

requiring that
¢ —0¢ P
[ [T g
oy

2 N2

for all |a| = m (see, e.g., [93, Definition 1.3.2.1]) but we make little use of
these spaces and we therefore do not enter into details of their theory.

In what follows we assume that if the boundary 92 of {2 is not an empty
set, then 32 is an n — 1 dimensional manifold of class C*!, k > 0 (that is, the
local atlas of 0f2 is k times continuously differentiable with the derivatives
of order k being Lipschitz continuous). For a smooth function u on {2, let us
define the trace of u on 92 to be the pointwise restriction of u to 0£2:

yu = ulggn.
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If m > 1/pis not an integer, n < k+landl4+oc=m—1/p,0< 0o <1,
I > 0 an integer, then the mapping

ou 0'u
U — 7”775aa7w i

where 0/0v denotes the outward normal derivative at 92, can be extended
by density to a continuous mapping from W,"({2) to (L2(002))+1 (precisely
speaking onto a product of appropriate Sobolev spaces of fractional order
defined on 912).

o
Under these assumptions we have another characterisation of W3'(£2):

o ou olu
W;"(Q):{uEW;"(Q); ’yu:’yayz-~-:’yﬁyl:0}. (3.46)

Let us consider the Cauchy problem of a diffusion type:

n

Ou(t,x) = Y. Oy, (aij(x)ﬁwju(t,x)) ,

3,=1

u(0,x) = up(x), (3.47)

where t > 0, x € (2, and ug is a given function. The real coefficients
{a;j(x)}1<ij<n are supposed to satisfy a;; € WL () and a;; = aj; for
i,7 =1,...,n. If 82 # 0, then the problem (3.47) should be supplemented
by some boundary conditions defined on 0f2; here we confine ourselves to the
homogeneous Dirichlet problem; that is, we require

’u,|,9(3 =0. (3.48)

According to our general philosophy, we convert (3.47) and (3.48) into an
abstract Cauchy problem in the Banach space X = L,(£2), 1 < p < co. Our
main interest is p = 1, but most results are based on the Ly theory so we
discuss the latter setting in some detail. Let us denote by Ag the differential

expression
n

(Au)(x) = > O (aij (x)azju(x)) , (3.49)

ij=1

understood, if necessary, in the sense of distributions, and define
A(]’pu = Au

for
u € D:=C3(0),

where C2(2) is the space of twice-differentiable compactly supported func-
tions in 2. The index p indicates that Ao, is considered in the space L,({2).

A crucial assumption is that A is strongly elliptic in (2; that is, for some
constant ¢ > 0 and all y = (y1,...,¥,) € R" and all x € 2 we have
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S 2
> ai(X)yiy; > elyl, (3.50)
ij=1

or equivalently
R Y ai(x)zz > clz|’,
ij=1
for all z € C". Then we have the following result, [82, Lemma 4.4.3].
Lemma 3.23. The operator (A p, D) is dissipative for any p € [1,00].

By Proposition 3.18 (iv), (Ao p, D) is closable with dissipative closure. How-
ever, finding the m-dissipative extension of Ay, requires a deep theory.

Lo Theory

Let {2 be either R™ or an open set with a C%! boundary 842. Possibly the
easiest approach to proving solvability of (3.47) in the space Lo({2) is to use
the variational approach and look for a suitable realisation of Ag, via the
associated sesquilinear form

a(u,v) = Zn: aij(x)aziu(x)azj@dx, (3.51)

ij=1

for u,v € D(a) :I/?/%(Q) Note that for 2 = R", we have V([)/%(R") = W4(R"™)
so that we can use common notation for both spaces without causing any
confusion. If 2 # 0, then I/?/% consists of those W3 (£2) functions whose trace

on 0f?2 is zero.
Then (see, e.g., [79, Theorem VI.5.18] or [82, Theorem 4.6.6]) we have:

Theorem 3.24. There is a unique dissipative operator (—Ag, D(A3)) such
that D(Az) C D(a) and a(u,v) = (Aau,v)r, o) for all u € D(Az) and v €
Lo(82). The operator (—Aq, D(As)) generates a semigroup of contractions in
Lo (£2), denoted by (G 4,(t))i>0-
By restricting

a(u,v) = (Aau,v)
to v € C§°(£2), it is easy to see that Ay coincides with the expression A in
the distributional sense; thus D(As) can be characterised as

D(A3) = {u €W}(92); Au € La(£2)}

(see, e.g., [93, Theorem 2.2.1.2]). The fact that u satisfies the boundary con-

dition yu = 0 if 942 # O follows from the fact that D(As) C D(a) :I/?/é(ﬂ)
This result is not fully satisfactory. First, the property Aqu € Lo(£2) does
not ensure that the second derivatives of u are in Lo({2) — there may be a
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cancellation of singularities in the expression A. Second, A; may fall short of
the ‘maximal’ operator As max (see Section 3.6 and [93, p.54]) defined on

D(Ag max) = {u € La(R2); Au € Ly(£2),vu = 0},

where the trace of u € Ly(§2) such that Au € Ly(£2) can be defined by means
of Green’s formula; see [93, p.54].

The first question is addressed by proving that, under certain assumptions,
the variational solution u € D(Az) is in W (£2). We can state the following
result (see, e.g., [93, Theorems 2.2.2.3, 2.5.2.1, and 3.2.1.2], [79, VL.5.22]).

Theorem 3.25. If 2 =R", or (2 is convez, or 012 is of class C', then
D(As)= Wk(02) N W2(2). (3.52)
In all these cases we also have

D(As max) = WH(2) N WE(R2). (3.53)

It is known that if 2, for instance, is a nonconvex polygon in R?, then D(Ay) #

IX/%(Q) N WZ(£2), [93, Chapter 4], and consequently we have the sequence of
strict inclusions (see [20])

W5(2) N WE(£2) & D(As) & D(As pmax)- (3.54)

We explore some other consequences of this fact in Example 3.53.
For further reference we note the following result.

Corollary 3.26. If B is a generator of a semigroup in La(R™) and satisfies
B|C§o(Rn) = A|Cg°(]R"); then B = AQ.

Proof. By (3.53) and (3.52), the graph norm generated by A on Lo(R") is
equivalent to the W3 (R™) norm. Because C§°(R™) is dense in WZ(R"), it is a
core of As and the thesis follows from Proposition 3.8. 0O

If 092 # 0, then C§°(£2) is not dense in I/?/%(Q) N W2(2) (the closure is

I/?/%(Q)) and we cannot expect such a result in this case. In fact, as noted in
Remark 3.7, an elliptic operator with various boundary conditions generates
different semigroups and yet it is given by the same expression on C§°(12).

We also note that by [71, Proposition 1.3.5 and Theorem 1.3.2], the re-
solvent R(\, Az) is a positive operator and therefore (Ga,(t))i>0 is a positive
semigroup (see Section 3.4).
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L, Theory, p # 2

We can construct L, realizations of (G 4, (t)):>0 in a relatively straightforward
manner using the following theorem, [71, Theorem 1.4.1].

Theorem 3.27. Let (Ga,(t))i>0 be the semigroup constructed in Theorem
3.24. Then L1(£2) N Loo(£2) is invariant under (G a,(t))i>0 and (Ga,(t))i>o0
can be extended from L1 (£2) N Lo (£2) to a positive one-parameter semigroup
(Gp(t))e>0 on Ly(£2) for any p € [1,00]. These semigroups are strongly con-
tinuous for p € [1,00), and are consistent in the sense that

Gp(t)f = Gq(t)f,  t20, (3.55)

for any f € L,(£2) N Ly(12).
Denoting by A, the generator of (Gp(t))t>0, 1 < p < 400, we also have

Apu = Agu, u € D(A,) N D(A,). (3.56)

This theorem, although settling the question of the existence of semigroups
in L, spaces, is not entirely satisfactory because it does not provide a full
characterisation of generators. It can be proved that for 1 < p < +oo the
situation parallels the Ly case. Classical results (see, e.g., [93, Theorem 2.4.2.4]
or [82, Theorem 4.8.3 and Corollary 4.8.10]) state that if {2 is a bounded
domain with sufficiently smooth boundary, then A, is the closure in L,({2)
of (A, Dy), where Dy is the set of C? functions satisfying the homogeneous
Dirichlet boundary condition on 92 and

D(A,) =W5(2) N W2(92). (3.57)

One can prove that also in this case A, coincides with the maximal operator.
The L, case is much more delicate. For bounded domains one can prove,
[82, Theorems 4.8.3 and 4.8.17] and [62, Theorem 8], that

— I (2
Al = (Aa DO) @

and
D(A1) ={u € L1(£2); Agu € L1(12)},

so that A; is the maximal operator. However, it is no longer true that D(A4;) C
WZ(£2) so that the second derivatives are no longer integrable: they have
‘nearly’ this property as D(4;) C VC[)/'{(Q) for any r < 2

Our main interest lies with the problem (3.47) in L;(R™). In this case
the theory is also quite involved and the characterisation of the domain of
generators is still a subject of ongoing research (see, e.g., [115]). Contrary
to the case of bounded domains, the Sobolev spaces W{(R™) are not really
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suitable here, but often we can get an alternative characterisation using other
types of spaces. We describe the case when the differential expression A is the
Laplacian:

Au = Au,

understood in the sense of distributions. It is useful to denote Ay = A|Cg° (R™)-
It can be shown that the realisation A; of the Laplacian that generates a
semigroup in Li(R™) is the restriction of A to the Bessel potential space
defined via Fourier transform F as

Lio(R") := {u € L1(R™); Fw[Fu]] € Li(R™)}, (3.58)

where w(y) := (1+ |y|?) (see, e.g., [98], pp. 32-37). Note that w is the Fourier
transform of the distributional operator I — A hence, in particular, if u €
L 2(R™), then Au € L;(R™). We norm this space with

lullr2 = [IF fwF [l o, @) = (1 = A)ull 2, @n)- (3.59)

One can show that C§°(R™) is dense in L; 2(R™) (see, e.g., [4], p. 221) so that
A = IOLl(Rn)

that

, as when (2 is bounded. One can also prove (see, e.g., [115])

Li2(R") C WI(R™),  r<2. (3.60)

Clearly, also WZ(R™) C Ly o(R™).
The semigroup generated by the Laplacian in L;(R") is given by the clas-
sical convolution formula

(G0 F1(x) = [ae * () = / ne(x — ) £ (y)dy (3.61)

Rn

of the fundamental solution u:(x) = (47rt)*”/26*|x|2/4t and the initial data f
([79, p. 69] or [98, p. 32-37]). Inasmuch as

O lpe * f1(x) = lpe * 9 f1(x) (3.62)

in the sense of distributions, from the Young inequality (2.48) with p = ¢ =
r =1, we immediately get that (G(t));>o is a strongly continuous semigroup
in any W}(R?), by Proposition 3.13. In particular, for [ = 0 we clearly have

G fll, @y < loelln, @yl Flly@ey = 112, @n)-

In Section 11.6.4 we need the scale of Bessel potential spaces L; s(R") defined
in a natural way as

Ly s(R") = {u € Li(R"); F~'[w*?F[u]] € L,(R")}, (3.63)

with norms given analogously to (3.59). It can be proved that these spaces
coincide with the domains of fractional powers of the operator I — A;. There-
fore the moment inequality (e.g., [141, p. 73] or [98, p. 37]) is valid: for any
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nonnegative § > s > v and 6 € [0, 1] satisfying s = 03 + (1 — 0)~ and some
constant C' > 0 we have

lullz, @y < Cllullg, @l @nys  u € Lig®™). (3.64)

Applying Holder’s inequality to (3.64) with particular values 8 = 2,7 = 0, we
obtain the second moment inequality

ooy < K (lulzoaen + € huln) . (365

valid for some constant K > 0, any € > 0, and any u € L; o(R"). Inequality
(3.65) is of importance in Theorem 11.19.

Unfortunately, the Bessel potential spaces L; s(R™) do not coincide with
Sobolev spaces unless n = 1, but on the other hand, they are ‘close’ to them
([98], p. 35-36). In particular, we have

Lig(R") C W} (R") C Ly, (R") fors” <1<, (3.66)

where all embeddings are continuous.

This result, combined with (3.65), allows us to treat diffusion problems
with convection (represented by a suitable first-order term) by means of per-
turbation techniques; see Section 4.3.

It is important to realize that the space L 2(R) is only practically suitable
for operators having the Laplacian as their principal part because even a linear
change of variables changes the domain of the generator. In fact, consider, for
instance, the generator B being the realisation of the expression of ug,,, +
Qipy, in L1 (R?). If w € D(B) = L1 2(R?), then we would have ug,,, €
Li(R™), as Au € L1(R™) but then also u,,,, € L1(R™) and consequently we
would have Ly 5(R?) = W2(R?), which is false; see [115].

3.2.2 Contractive Semigroups with a Parameter

In many instances we are given a family of generators depending on a param-
eter. It is a natural question as to whether we can patch these generators in
such a way that the obtained object is again a generator in a product space.
If the generators are dissipative, then the result is positive, as follows from
the proposition below.

Let us consider the space X' := L,({2,X), where 1 < p < oo, (£2,p) is a
measure space and X is a Banach space. Let us suppose that we are given a
family of operators {(A,, D(Sy))}ven in X and define the operator (A, D(A))
acting in X according to the following formulae,

D(A) :={u € X; u(v) € D(A,) for a.e. v € 2, Au € X}, (3.67)

and, for u € D(A),
(Au)(v) := Ayu(v), (3.68)

for almost every v € 2. We have the following proposition.
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Proposition 3.28. If A, are m-dissipative operators in X for anyv € 2 and
the function v — R(X, Ay) f(v) is measurable for any A > 0 and f € X, then
the operator A is an m-dissipative operator in X. If (Gy(t))i>0 and (G(1))e>o0
are semigroups gemerated by A, and A, respectively, then for almost every
veE N, t>0, and u € X we have

G(t)u](v) = G, (t)u(v). (3.69)

Proof. Because for almost every v € {2 the operator (A,, D(A,)) is dissipative
in X, we have by Eq. (3.42) that for u(v) € D(A,),

(AL = Ay)u(v)||x > Mu(v)||x, A>0,aa. ve (3.70)

Let f € X = Ly(£2,X). Because for v € {2 we have f(v) € X, by m-
dissipativity of A, there is u(v) € D(A,) satisfying (A — A,)u(v) = f(v)
for almost all v € £2 and therefore u(v) = R(X, A,) f(v). By (3.70) we get

[u(v)llx = IR A) f(0)llx < A7Hf(0)]x- (3.71)

The function u defined by v — w(v) is measurable by assumption and by
integration we have
lulla < A7HIF -

Hence u € X by Theorem 2.22. Consequently, again by (3.42), A is dissipative
in X and \Z — A is surjective onto X'. Hence A generates a semigroup of
contractions, say (G(t))i>o, in X.

Let R()\,.A) be the resolvent of A. From the preceding considerations it
follows that for every f € X,

RO A fl(v) = R(A, Ay) f(v). (3.72)

By Eq. (3.22) we have, for an arbitrary u € X and ¢ > 0,

G(t)u = lim (%'R (E,A>>nu,

n—oo t

and we can extract a subsequence ((nyR(ng/t, A)/t)"* u), oy which converges
in X almost everywhere in 2. On the other hand this subsequence converges in
X to G, (t)u(v), by (3.72), because A, is the generator of (G, (t))¢>0. Therefore

(3.69) holds. O

Example 3.29. Let us consider the following simple transport problem. Find
[ € Li1(R%) satisfying

O f(t,
f(o,

) = w0, f(t,x,v) —a(v) f(t,x,v), t>0,(x,v)€R%r,
) fO(xaU>7

where fo € L;(R%). This model can describe the motion of particles with
speed v > 0, which are absorbed at the rate a. In this case f is the density

T,V
T,V
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of particles at point  moving with speed v. About a we assume that it is a
measurable almost everywhere positive function. By Examples 3.6 and 3.10
we see that the resolvent R(\, A,) and semigroup (Gy(t))i>0 in L1 (Ry) are
given by, respectively,
o0
[RONAf(s) = pelresin [ eean i)y

(%
s

and

[Gu(t) f](x) = e f(x 4 vt).
From, for example, the Fubini theorem [R(), A, ) f](s) is measurable as a func-
tion of two variables and thus, by Proposition 3.28, we obtain that the semi-
group for the full problem is given by

[G(t) fl(x,v) = e f(w + v, v).

Chapters 10 and 11 are concerned with more realistic, and certainly more
involved, transport problems.

3.3 Nonhomogeneous Problems

Nonhomogeneous problems do not belong to the mainstream of topics that
concern us in this monograph. Occasionally, however, we need some basic
results. We recall them at this point.

Let us consider the problem of finding the solution to the Cauchy problem:

d
d—?:Au+f(t), 0<t<T
u(0) = wuy, (3.73)

where 0 < T' < o0, A is the generator of a semigroup, and f: (0,7) — X is a
known function.

If we are interested in classical solutions then f must be continuous. How-
ever, this condition proves to be insufficient. We thus generalise the concept of
mild solution introduced in (3.13). We observe that if u is a classical solution
of (3.73), then it must be given by

u(t) = G(t)uo + / Gt — 5)f(s)ds (3.74)

(see, e.g., [141, Corollary 4.2.2]). The integral is well defined even if f €
Li([0,T],X) and uyg € X. We call u defined by (3.74) the mild solution of
(3.73). For an integrable f such w is continuous but not necessarily differen-
tiable, and therefore it may be not a solution to (3.73).

We have the following theorem giving sufficient conditions for a mild so-
lution to be a classical solution (see, e.g., [141, Corollary 4.2.5 and 4.2.6)).
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Theorem 3.30. Let A be the generator of a Cy-semigroup (G(t))i>0 and x €
D(A). Then (3.74) is a classical solution of (3.73) if either

(i) f € CL([0,T],X), or
(”) f € C([OvT]v‘X) le([OaT]aD(A»'

The assumptions of this theorem are often too restrictive for applications.
On the other hand, it is not clear exactly what the mild solutions solve. A
number of weak formulations of (3.73) have been proposed (see, e.g., [82, pp.
88-89] or [47]), all of them having (3.74) as their solutions. We present here
a result from [79, p. 451] which is particularly suitable for our applications in
Subsection 8.3.2.

Proposition 3.31. A function v € C(R4,X) is a mild solution to (3.73)
with f € Li(Ry, X) in the sense of (3.74) if and only if fo s)ds € D(A) and

M)_u@+A/ d&+/f t>0. (3.75)

Proof. Suppose u satisfies (3.75). Because, by assumption, u is continuous,
(3.75) can be written as

6;Zt/tu(s)ds :uo+A/tU(5)d5+/tf(s)dS
0 0 0

hence fo s)ds is the solution of (3.73) with inhomogeneity wug + fo s)ds and
zero initial condltlon Hence, by the discussion preceding (3.74),

t t

/Mﬂh:/ap@ %+jﬂ@w ds
0

0 0
t

/Ga@%m+jaqg jﬂ@w ds

0
t

/G@w@+jbd$ jﬂ@w ds.  (3.76)

0

Now if f € L1(R4,X), then (s,0) — F(s,0) := G(s)f(o) is an integrable
function on [0,¢] x [0,¢]. In fact, if f is a simple function, then F' is measur-
able by Example 2.23, because (G(t)):>0 is strongly continuous. If f is only
integrable, then it can be approximated by simple functions (f,,)nen and then
obviously F,(s,0) := G(s)fn(0) converges to F' in L1([0,¢] x [0,t]), by local
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uniform boundedness of (G(t));>o. Thus, changing first the order of integra-
tion and then the variable s in the inner integral according tot — s =r — o,

we get
/tG(t —3) /Sf(cr)do ds = j /tG(t —8)f(o)ds | do
0 0 0

o
t t t T

:/ /G(r—a)f(a)dr da:/ /G(r—a)f(a)do dr,
0

o 0 0

where to get the last integral we changed the order of integration once again.
Therefore (3.76) takes the form

ju(s)ds = /tG(s)uods—F/t ]G(r—a)f(a)da dr. (3.77)
0 0 0 \0

Differentiating and taking into account that u(¢) and G(t)up are continuous,
we obtain (3.74).

To prove the converse we note that u, defined by (3.74), is continuous.
Integrating (3.74) and performing the above calculations in the reverse order
we obtain (3.76),

/tu(s)dS:/tG(t—s) uo—|—/sf(a)dcr ds.
0 0 0

If f(t ) were continuous then we would be able to use Theorem 3.30 to claim

that v(t) = fo s)ds is a classical solution to (3.73) and then, by differen-
tlatlng v, to obtaln (3.75). For f that is only 1ntegrable we have to proceed

with more care. Consider ug + F(t) = ug + fo o)do. By (3.7) and (3.6) we
obtain that fot (t — s)ugds € D(A) and is differentiable with the derivative

G(t)up so that we have to show that vy (¢ fo (t —s)F(s)ds € D(A). By
the definition of the domain we have to cons1der

%vl(t) - % /G(t+ h — s)F(s)ds — /G(t — 8)F(s)ds
0 0

= i+ n) — ) - / Gt + h — 5)F(s)ds

S

Because u is continuous, v is continuously differentiable and so is v1(t) =

fo (t — s)upds. Hence we only have to deal with the second term.
Notmg that, by (3.6),
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t+h h

lim l/G(t-i—h—s)F( t)ds = lim — / = F(t),

h—0+ h h—0+ h
0

we obtain, using uniform continuity of F' to pass to the limit in the last line,

t+h

hl;n(r)l E/Gt—i—h—s)F( )ds
t+h
(t)+ lim, E/Gt+h—s F(s) — F(t))ds
h
() + lim - / F(t+h —u) — F(t))du = F(t).

0
Thus, by (3.6)

t

Av(t) = A / Glt — syupds + lim &

h—0+
0

— G(t)uo — uo + ult) — Glt)ug — / F(s)ds,
0

hence v(t) € D(A) for any ¢t > 0 and satisfies (3.75). O

3.4 Positive Semigroups

Definition 3.32. Let X be a Banach lattice. We say that the semigroup
(T'(t))e>0 on X is positive if for any x € X4 and t > 0,

T(t)xz > 0.

We say that an operator (A, D(A)) is resolvent positive if there is w such that
(w,00) C p(A) and R(\, A) >0 for all X > w.

Remark 3.33. In this section, because we address several problems related to
spectral theory, we need complex Banach lattices. Let us recall, Definitions
2.85 and 2.90, that a complex Banach lattice is always a complexification X¢
of an underlying real Banach lattice X. In particular, x > 0 in X if and only
ifxe X and x> 0in X.

It is easy to see that a strongly continuous semigroup is positive if and only
if its generator is resolvent positive. In fact, the positivity of the resolvent for
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A > w follows from (3.31) and closedness of the positive cone; see Proposition
2.73. Conversely, the latter with the exponential formula (3.22) shows that
resolvent positive generators generate positive semigroups.

A number of spectral results for semigroups can be substantially improved
if the semigroup in question is positive. The following theorem holds, [139,
Theorem 1.4.1].

Theorem 3.34. Let (G(t))i>0 be a positive semigroup on a Banach lattice,
with generator A. Then

R\, Az = / e MG (t)xdt (3.78)
0

for all X € C with R\ > s(A). Furthermore,

(i) Fither s(A) = —o0 or s(A) € o(A);
(ii) For a given X € p(A), we have R(\, A) > 0 if and only if A > s(A);
(iit) For all R\ > s(A) and x € X, we have |R(\, A)x| < R(RX, A)|z|.

Proof. From Proposition 3.16 we have s(A) < abs(G) = wi(G), hence if
w1(G) = —o0, then s(A) = —oo. We may therefore assume that w1 (G) > —oc.
First, we prove that wi(G) € o(A). If we assume the contrary then R(\, A),
which is analytic for R\ > wi(G) (= abs(G)), can be extended to an e-
neighbourhood of wy(G) for some ¢ > 0. However, by Proposition 3.15, for
RA > w1(G) the resolvent R(A, A) is the Laplace transform of t — G(t)z. If
x > 0, then Theorem 2.94 implies that £(G(t)x) can be extended analytically
for RA > w1 (G) —e. By decomposing any x € X into real and imaginary parts
(see Definition 2.85) and then each of these into positive and negative parts,
we see that L(G(t)x) exists for any € X in the half-plane R\ > w1 (G) — €
which contradicts the result that wi(G) = abs(G) (see Proposition 3.16).
Thus, w1 (G) € o(A) and therefore wi(G) < s(A) which yields s(A) = w1 (G).

To prove (ii) we note that if A > s(A), then by the first part of the
proof, A > abs(G), and thus R(\, A), given by (3.78), is positive as (G(¢))¢>0
is positive. Conversely, assume that A € C and R(A, A) > 0. We begin by
proving that A € R. Let > 0, y = R(\, A)z > 0, and note that by Definition
2.85,

Ty = Jim TG0y —y) = lim (G0~ y) = Ay,

t—0+ t t—0+ ¢
and thus the identity
Ny —Ay=x=72=\y— Ay =y — Ay

shows that A = .
Because for all p > s(A) we have R(u, A) > 0, taking arbitrary p >
max{A\, s(A)}, we obtain from the resolvent identity (2.54),
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R(M\A) = R(p, A) + (p = A R(N, A)R(p, A) = R(p, A) >0 (3.79)

by assumption. Because A € p(A), A # s(A4) (by the first part of the proof).
Suppose A < s(A). Then we can take A\ < g — s(A) and because s(A4) €
o(A), Theorem 2.35 implies ||R(u, A)|| — oo, which contradicts (3.79). Hence
A > s(A).

To prove (iii) we note that by (3.78) for z € X and RA > s(A),

RO\, A)z] < /e’th(t)|x|dt — R(R, A)z],
0

where the integrals are understood in the improper sense. O

Remark 3.35. Tt can be proved, [12, Proposition 5.11.2], that the statement
(ii) is true for any resolvent positive operator and not only for generators of
positive semigroups but the proof of this fact is much more involved.

Ezample 3.36. Consider the translation semigroup on [0, 1] discussed in Exam-
ple 3.11. It is a positive semigroup satisfying wy (G) = —oo, because G(t)f = 0
for any f if ¢ > 1. Consequently s(A) = —oco and (A) = 0, in agreement with
Example 2.37.

From Theorem 3.34 we see that the spectral bound of the generator of a
positive semigroup controls the growth rate of all classical solutions. However,
the strict inequality s(A) < wo(G) can still occur, as was shown by Arendt; see
[139, Example 1.4.4]. In this example X = L,([1,00)) N Ly([1,00)), 1 < p <
q < 00, and the semigroup in question is (G(¢)f)(s) := f(se'), s > 1,¢ > 0. Its
generator is (Af)(s) = sf’(s) on the maximal domain and it can be proved
that s(4) = —1/p < —1/q = w(G).

Interestingly enough, s(A4) = wy(G) holds for positive semigroups on LP-
spaces. This was proved a few years ago by L. Weis, [168]; see also [139,
Section 3.5]. The theorem for general p is quite involved so we do not present
it here. However, for the case p = 1, which is most relevant for the applications
described in this book, it can be proved with much less effort.

Theorem 3.37. Let (G(t))i>0 be a positive semigroup on an AL-space and
let A be its generator. Then s(A) = wo(G).

The theorem is a corollary of a general result known as the Datko theorem.

Theorem 3.38. Let A be the generator of a semigroup (G(t))i>o0. If, for some
p € [1,00),

/ |Gty < o, (3.80)
0

for all x € X, then wy(G) < 0.
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Proof. First we show that (G(t));>0 is bounded. There are constants M7, w
for which ||G(t)|| < Mie**. We can assume w > 0, as otherwise there is
nothing to prove. From (3.80) it follows that G(t)r — 0 as t — oo for any
x € X. Otherwise there would be z € X, 6§ > 0, and (¢;);en diverging to oo
such that ||G(t;)z| > &, where we can assume that ¢; —t;_1 > w™'. Denote
I; = [t; — w1, t;]. Then the length of each interval I; is w™! and they do
not overlap. The increment of ||G(t)x| over each I; is not greater than Mje,
therefore we see that |G(t)z|| > 6/Mye for ¢t € I; and any 4. Hence

? [e'e] 5 P
/ |G(talPdt > 3> [ 1IG(0)|dt > (M) Sop(;) = oo,
) =0/ 1€ i=0

which contradicts (3.80). The Banach—Steinhaus theorem implies |G(t)|| < M
and the first part is proved. Next, (3.80) implies that the map S : X —
L,(Ry,X) given by Sz = G(t)x is defined on the whole X and it is also
closed. In fact, let ©, — =z in X and G()z, — f(-) in L,(R4+,X). Then
there is a subsequence of (z,,)nen such that G(¢t)x,, — f(¢) for almost every
t € Ry. Because G(t)x, — G(t)z for any t > 0, we obtain f(t) = G(t)x
almost everywhere and, by continuity, for all £. The Closed Graph Theorem
gives now

1Sz ||” = / IG@)x]|Pdt < M| (3.81)
0

Next let us take p € (0, M~1), where |G(¢)|| < M, and define
(o) = sup{t; [G(s)2] > pllal] for 0 < s < 1}.

From the first part of the proof we see that t,(p) is finite for every = € X.
Moreover

ta(p)

ta(p)Plll” < / |G(t)z|Pdt < / \G(t)elPdt < M|z,
0 0

hence t,(p) < tg := (Mz/p)” and so & — t,(p) is uniformly bounded on X.
Taking t > ¢y, we obtain

1G]l < (|Gt = ta(p) |Gt (p))]| < Mpll],

where Mp < 1 by the choice of p. Finally, let us fix ¢t; > tg and let t = nt; +s
with 0 < s < t1. Then

IGOI < IGONG i)l < MG ()" < M(Mp)™ < M'e™",

where = —(In Mp)/t; and M’ = p~1. O
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Proof of Theorem 3.37. Defining < f,x >:= ||z|| for z € X, we obtain a
positive additive functional which can be extended to a bounded positive
linear functional by Theorems 2.64 and 2.65. Let w > abs(G) = s(A4) (see
Theorem 3.34). Then for x > 0 and 7 > 0, we have

/ et G(t)z | dt = < , / e“tG(t)mdz> < <f,R(w, A)a> .

0 0
Therefore -
/e_“’tHG(t)det < 400
0

for all € Xy and hence for all x € X. Theorem 3.38 then implies ||G()]] <
Me@=m?t for some p > 0, hence wy(G) < w which yields wy(G) < s(A) and
consequently s(A) = wo(G). O

We conclude this section by briefly describing an approach of [9] which leads
to several interesting results.

To fix attention, assume for the time being that w < 0 (thus, in particular,
A is invertible and —A~! = R(0, A)) and A > 0. We note the resolvent identity

AT = (A=A T A=A T (=AY,
which can be extended by induction to
AT = RO\ A) AR A 4 -+ PR\ A (AT, (3.82)
Now, because all terms above are nonnegative, we obtain

sup {N'|(A—A) " (=AY||x} =M < 4o0.

neN,A>w
This is ‘almost’ the Hille-Yosida estimate and allows us to prove that the
Cauchy problem (3.10), (3.11) has a mild Lipschitz continuous solution for
up € D(A?). If, in addition, A is densely defined, then this mild solution is
differentiable, and thus it is a strict solution (see, e.g., [9] and [12, pp. 191-
200]). These results are obtained by means of the integrated, or regularised,
semigroups, which are beyond the scope of this monograph, so we do not enter
into details of this very rich field. We mention, however, an interesting con-
sequence of (3.82) for semigroup generation which has already found several
applications, [52, 53].

Theorem 3.39. [9, /9] Let A be a densely defined resolvent positive operator.
If there exist g > s(A),c > 0 such that for all z > 0,

[R(Ao, A)z|x > ezl x, (3.83)

then A generates a positive semigroup (Ga(t))i>0 on X and s(A) = wo(Ga).
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Proof. Let us take s(A) < w < Ag and set B = A — wI so that s(B) < 0.
Because R(0,B) = R(w,A) > R(Ag, A), it follows from (3.83) and Remark
2.68 that

112(0, B)z||x > [[R(Ao, A)zllx = ezl x

for > 0. Using (3.82) for B and taking x = A"R(\, B)"g, g > 0 we obtain,
by (3.83),
[IA"R(X, B)"gllx < ¢ H[R(0, B)A"R(X, B)"g|| < ¢ ![|[R(0, B)g| x < M|glx,

for A > 0. Again using Remark 2.68, we can extend the above estimate onto X
proving the Hille—Yoshida estimate. Because B is densely defined, it generates
a bounded positive semigroup and thus [|Ga(t)f| < e*t. Because w > s(A)
was arbitrary, this shows that wo(G4) < s(A) and hence we have equality. O

3.5 Pseudoresolvents and Approximation of Semigroups

Let A be a closed, densely defined operator on X and R(\, A) = (A — A)~!
be its resolvent. Let us recall that if u, A are in the resolvent set p(A), then
we have the resolvent identity

RO\, 4) = R(, A) = (1 — R\, A)R(s, A).
This suggests the following definition.
Definition 3.40. Let A C C. A family {J(\)}rea of bounded linear operators
on X that satisfies

JO) = () = (= NI (), Ape A (3.84)
is called a pseudoresolvent on A.

Theorem 3.41. Let {J(A)}rea be a pseudoresolvent on A C C.

(a) The range ImJ(\) and the kernel KerJ(\) are independent of A € A;
(b) J()) is the resolvent of a unique densely defined closed operator A if and
only if KerJ(X\) = {0} and ImJ(\) is dense in X.

Proof. (a) By
JA) = J() I + (n = A)J(N),

we see that ImJ(\) C ImJ(u) and, interchanging p and A, we obtain the
equality. Similarly
JA) = (I + (= NJN)J (1),

gives KerJ(\) D KerJ(u) and by symmetry we obtain the equality.
(b) It is enough to prove sufficiency. Because KerJ(A) = {0}, J()) is
one-to-one and we can define for some )\ € A,
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A= Xl —J(Xo) L.

As defined, A is linear, closed, and with D(A) = ImJ(X\o), dense in X. Also,
directly from the definition, R(Ag, A) = J(Ag). For A € A we have

(AT — A)T() = (A~ Ao)T + (o — A)T(N)
= ((A=20)I + (Ao = A4))J(Ao)(I + (Ao = A)J(A))
=(A=20)J(Ao)L + (Ao = A)J(A) + I+ (Ao — A)J(A)
=TI+ (A=) (Ao) = J(A) = (A= A)J(A)J(Ao)) = I.
Similarly
TV = 4) = (T + (3 = NI A0) (A = M) + (oI — 4))
= (I + (Ao = A)JTN)(

(A= 2A0)J(Ao) + 1)
)+ JA) + (A=) J(AN)J (X)) =

so that J(A) = R(\, A) for every A € A. In particular, A is independent of A
and uniquely determined by J(A). O

=T+ (Mo —A)(=J(No

Corollary 3.42. Assume that A is an unbounded subset of C and J(X\) is a
pseudoresolvent on A. Assume that there is a sequence A, with |A\,| — o0
such that either

()
A d A < M (3.85)
for some M < 400 and ImJ(\) is dense in X, or
(ii)
lim A, J(A\p)z =2 (3.86)

for any x € X.

Then J(X) is the resolvent of a unique densely defined closed operator A.

Proof. (i) Tt is enough to prove that KerJ(\) = {0}. Clearly, ||J(\,)|| — 0
as n — oo and, writing (3.84) as

‘]()\n) - M‘](M)J(}‘n) = J(:u) - /\n'](/\n)‘](:u)’ pe A,

we get
Jim [[(AnJ (An) = D) J ()] = 0.

Therefore, if © € ImJ(u), we have

lim A, J(A\p)z = z.

n—oo

Because ImJ(p) is dense in X and A,J(A\,) are uniformly bounded, we
have this convergence on the whole X. Thus, if z € KerJ(u) then, because
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KerJ(A) is independent of A, A, J(A,)x = 0 for all n and therefore z = 0,
which proves the assertion.

(ii) Because Im.J(p) is a linear space independent of u, A,J(A,)z €
ImJ(u) for any x € X. Hence, by (3.86), ImJ(u) is dense in X. Also, by
the Banach—Steinhaus theorem, (3.86) implies (3.85); thus the assumptions of
(i) are satisfied and J(A) is a resolvent. O

The theory of pseudoresolvents is important to develop the Trotter—Kato
theory for approximation of semigroups. The main result of this theory is the
following theorem.

Theorem 3.43. Let A,, € G(M,w). If there exists Ao with RAg > w such that

(a) for every x € X,
lim R()\(),An)(ﬁ = R(Ao)x,

(b) the range of R(Ao) is dense in X,

then there exists a unique operator A € G(M,w) such that R(A\o) = R(Xo, A).
Moreover, if (G, (t))i>0 are semigroups generated by A,, and (G(t))i>0 is
generated by A, then for any x € X

lim G,(t)r = G(t)x (3.87)

n—00

uniformly in t on bounded intervals.

Proof. We can assume that w = 0. The first step is to prove that the con-
vergence occurs for all A with RA > 0. Define S to be the set of all such A
for which (R(X, An)x)nen converges. Let p € S and expand R()\, A4,,) in the
Taylor series around p:

R(\ A,) = ki::O(u — AR, Ag)HH, (3.88)

We know, Eq. (3.33), that
IR, A)¥|| < M (Rp) ", (3.89)

so that the series converges in the uniform operator topology for all  satisfying
A — p]/Rpe < 1 and this convergence is uniform in A for all A\ satisfying
A — p|/Rp < 0 for any € < 1. Thus, for any € > 0 we can find kg such that

o) M o0
0SS (= MR AR ] < IS g
k=ko+1 Ru k=ko+1

Next, we observe that from R(u, A, )z — R(p)z it follows that R(u, A, )*z —
R(p)kz for any k. In fact,

R(u, A)* e = R(p, An) (R(p, An)*z — R(u)*x) + R(p, An)R(p)*z (3.90)
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and the statement follows by induction from the boundedness of | R(x, A,,)*z .
Thus, we find ng such that for n,m > ng and all k& < kg, we have

IR (g, An)* 2 — Ry, A ) al| < ell]].

Now, for such n, m we obtain

S (1= N (R(, An)* 2 — R(pt, A )<+)

k=0

IR, An)z — R(\, Ap)x|| =

<¢wiwm> 1 2)

so that (R(\, A,))nen strongly converges for all \ satisfying |\ — p| < 6Ru

provided (R(u, An))nen converges. Thus, for any fixed p with 0 < Ru < R,

any point on the closed half-plane {A € C; A > Ru} can be reached from

Ao by a finite chain of disks of radius 8%y so this half-plane is in S. Because

w can be fixed arbitrarily with ®u > 0, we see that S = {\ € C; R\ > 0}.
For every A with A > 0 we define a linear operator R(\) by

RNz = lim R(X, Ay)x.
Passing to the limit in the resolvent identity for A,, we obtain
R(A) = R(p) = (u = MR R(p),  RARp >0,

and therefore R(\) is a pseudoresolvent by (3.84). By Theorem 3.41(a) the
ranges of a pseudoresolvent are independent of A, and thus we have the density
of the range of R(\) by (b). Also, passing to the limit in (3.89), we obtain

IRV < MRA—"

so that, in particular, for kK = 1 and real A > 0 we obtain the assumption
(3.85) of Corollary 3.42 and therefore R(\) is the resolvent of a densely defined
closed operator A with R(A) = R(\, A) that, by the above, is the generator
of a semigroup of type (M,0).

As in the proof of Proposition 3.4, we note that if ¢ — f(¢) is an X-
differentiable function taking values in the domain of the generator 7" of a
semigroup (S(t))¢>0, then the function ¢ — S(¢) f(¢) is differentiable with

d
G50 (t) = SO (&) + SHOTF(2)-
Using this result we have, for any fixed ¢t and 0 < s < t,

L Galt — 9RO, A)GS)RO, A

=Gp(t — $)R(N, A,)G(s)AR(\, A)x — G, (t — s)ApR(A, A,)G(s)R(N, A)x
= AGp(t — s)R(A\, Ap)G(s) RN, A)x — G (t — s)R(N, Ap)G(s)x

— AGp(t — s)R(\, An)G(s)R(X, A)z 4+ Gy (t — 5)G(s)R(N, A)x
= Gu(t = s)(R(A\ A) = R(X, An))G(s)z,
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so that, integrating the left-hand side from 0 to ¢, we get
R\ AL)G()R(A, A)z—Gr(t)R(N, An)R(N, A)x = R(XN, An)(G(t)—Gr(t))R(A, A)x

and finally

RO\ A (G(E) — G (1)) /Gnt—s (A A) — RO\, A))G(s)ads.
0

(3.91)
Next consider

DR, Az — GERN, Az + Gr(t) R, Ap)z — G () RN, An )z
RO\ AG () — RN An)G(t)a

DR A)z — RO Ap)z) + (RO, Ay) — RO\, A)G(t)z

RO AL (Go(t) — Gz = Iy () + Ly () + Iy (t).

Let us fix t7 < 4o0o0 and let ¢ € [0,¢;]. Because ||G,(t)|| < M, we get
lim,,_, o0 11,5, (t) = 0 uniformly in ¢ on [0, ¢1]. Moreover, as the set {G(¢)z; 0 <
t < t1}is compact in X, we see that lim,, o I, (t) = 0 uniformly in ¢ € [0, t1],
as in the proof of Corollary 2.12.

To estimate I3, (t) we write x = R(X, A)y and use (3.91) to obtain

/aﬁ—ﬁmuam—mmmm@ws
0

1 3(0)] =

< / [Gn(t = $)II(R(A, An) — R(X, A))G(s)yl|ds
0

<1 [ (RO AL = RO )G ds.

The integrand converges to zero for each s and can be estimated

[(R(A, An) — R(A, A)G(s)yll < (RN, An) || + [[RA, A)DIG () [yl
< 2MPRA |yl

from the Hille-Yosida theorem. Thus, by the Lebesgue dominated convergence
theorem, I, 5(¢) also tends to zero uniformly in ¢ € [0, ¢1]. Hence, we have

lim [|R(A, An)(Gn(t) = G(£))R(A, A)yl = 0

n—oo

uniformly in ¢ € [0,¢;]. Thus, for any z = R(\, A)%y € D(A?),
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lim [|(G(t) — G()a]| = 0 (3.92)

n—oo

uniformly in ¢. Because |Gy (t) — G(¢)]| is uniformly bounded and D(A?) is
dense in X, by the Banach—Steinhaus theorem (3.92) can be extended to X.
O

Corollary 3.44. If the limit

)\lim ARN, Ap)x =2 (3.93)

is uniform in n, then R(X) is the resolvent of a densely defined closed operator.

Proof. Writing the assumption explicitly as: for any € there is Ay such that for
every A > Ag and any n ||AR(\, A, )x — || < €, we can pass to the limit inside,
so that |[AR(A)z — z|| < € and condition (ii) of Corollary 3.42 is satisfied. O

Theorem 3.45. Assume that A, € G(M,w) satisfy

(i) Apx — Ax asn — oo on a dense subset D of X,
(ii) Im(Agl — A)D = X for some Ny > w,

then A € G(M,w) and the assertions of Theorem 3.43 hold.

Proof. We begin by proving the convergence of resolvents of A,,. Let y € D,
x = (Aol — Ay, and x,, = (Aol — A,,)y. Because A,y — Ay, we see that
T, — T as n — 00. Also

lim R(Ag, An)x = lim (R(Ag, An)(x — 2p) + R(Xo, An)xy)

n—oo n—oo

= lim RN\, An)(z — ) +y =1y, (3.94)

on account of the norm boundedness of R(Ag, A,,). Thus, R(\g, Ay,) converges
on (Aol — A)D. But this set is dense in X and again using boundedness of
[IR(Xo, An)|| we obtain convergence of R(Ag, Ay,) on the whole space. Define
From (3.94) we see that D is contained in the range of R(Ag) hence the latter
is dense. By Theorem 3.43 we have the existence of an operator A’ € G(M,w)
such that R(Ag, A") = R(\g).

To prove that A’ = A, we first show that A’ D A. For x € D we have

lim R(Mo, An) (Aol — A)z = R(hg, A (Mol — A)z,

n—oo

and on the other hand

R(Mg, Ap) (Mol — A)x = R(Ng, An) (Mol — Ap)z + R(No, Ap) (A, — A)x
=x+ R(Xo, An)(A, — A)x — z,
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as n — oo due to the norm boundedness of R(\g, A,,). Therefore
R(/\(),A/)()\()I — A)JJ =X

for x € D so that A’z = Ax on D and therefore A’ D A. Let 3/ = A’2’ so
that Aoz’ — A2’ = Xoa’ — y'. Because A’ is an extension of A, (A\gI — A’)D is
dense in X and there is a sequence (z,,)nen C D such that

lim y, = lim (Aol — A )z, = lim (Aol — A)z,, = Moz’ — 4.

Thus
lim z, = lim R(\o, A")y, = R(Xg, A )( Nz’ — A'2") =2
n—oo n—oo

and

lim Az, = lim (Aozn — yn) = -

n—oo n—oo

Therefore y' = Az’ and A’ C A. This proves A’ = A. O

3.6 Uniqueness and Nonuniqueness

Let us return to the general Cauchy problem (3.1), (3.2). If, for a given wuy,
it has two solutions, then their difference is again a solution of (3.1) but
corresponding to the null initial condition — it is called a nul-solution; see
[100, Section 23.7]. We say that a solution is of normal type w if

limsup ¢ *log||u(t)|| = w < 4o0. (3.96)
t—o0

A solution u(t) is said to be of normal type if it is of normal type w for some
w < +o0.

Remark 3.46. Tt is easy to see that if u(t) is of normal type w, then for any
w' > w there is M, such that

lu(t)]| < Myre™.

Indeed, otherwise there would be @ > w such that for any n there would be
t,, with )
[u(tn)ll = ne”'.

We can assume that (t,)nen is unbounded as otherwise there would be a
subsequence converging to a finite value ¢ at which the solution would blow-
up, contrary to the assumption that the solution is continuous for all ¢t. Thus

logn

lim sup ¢~ log||u(t)|| > +w>w.

t—oo tn

Conversely, if the solution is exponentially bounded, then it is of normal type.
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Theorem 3.47. [100, Theorem 23.7.1] If A is a closed operator whose point
spectrum is not dense in any right half-plane, then for each ug € X the Cauchy
problem of Definition 3.1 has at most one solution of normal type.

Proof. If there are two solutions of possibly different, normal type, then their
difference, say u, is a nul-solution of some normal type, say w. Let

L= / Myt dt,
0

where the integral exists as the Bochner integral for R\ > w where it defines
a holomorphic function. For such A and 0 < a < # < +00 we have

8 B B

/e_)‘tu’(t)dt = /e_AtAu(t)dt :A/e_Mu(t)dt,

(0% [e3
where we used the closedness of A. Integrating the first term by parts we have

B B
/efmu/(t)dt = e Pu(B) — e Pu(a) + A/ef)‘tu(t)dt

[e3% (e

and the right-hand side converges to AL(\,u) as a — 07 and 8 — oo be-
cause u(0) = 0. Thus Aff e~ Mu(t)dt also converges and because the integral
converges to L£(A)u, from closedness of A we obtain

ALN)u = AL(A)u.

Now, L(M\)u is not identically zero as the Laplace transform of a supposedly
nonzero function and, being analytic, can be equal to zero on at most discrete
set of points. Thus, £L(A)u is an eigenvector of A for all A with R\ > w except
possibly for a discrete set of A\. Thus the point spectrum is dense, contrary to
the assumption. 0O

Theorem 3.48. [100, Theorem 23.7.2] Let A be a closed operator. The
Cauchy problem (3.1), (3.2) has a nul-solution of normal type < w if and
only if the eigenvalue problem

Ay(A) = Ay(A) (3.97)

has a solution y(\) # 0 that is a bounded and holomorphic function of X\ in
each half-plane RA > w + €, € > 0.

Proof. The necessity follows from the previous theorem. To prove sufficiency,
assume that yo(A) is bounded and holomorphic for A > w+ € for some € > 0.
Because the solution to (3.97) can be multiplied by an arbitrary numerical
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function and still be a solution, we consider y(A\) = (A + 1 — w) 3yo(\) and
take the inverse Laplace transform (2.44),

y+ioco
1
u(t) = 3 / My(Ndx, v > w. (3.98)
y—100

Thanks to the regularising factor, the integrand is bounded by an integrable
function locally uniformly with respect to t € (—oo, +00). Thus it is absolutely
convergent to a function continuous in ¢ on the whole real line, which satisfies
the estimate

[u(®)] <2 sup_ lyo(y +ir)[le™ (v — w +1)*.

The estimate is independent of «v due to properties of complex integration and
therefore, for ¢ < 0, we obtain that y(¢) = 0 by moving v to co. From the
above we also obtain that the type of u(t) does not exceed w. Using closedness
of A we obtain

Y+ioo y+ico

1 1
Au(t) = 5— / e“Ay()\)d)\:% / eMAy(N)dA.

y—100 y—100

Due to the fact that the regularising factor behaves as (3\) 72, the last integral
is still absolutely convergent and equals «’(t). Thus it follows that u(t) is a
nul-solution of type < w. Clearly, u(t) cannot be identically zero as it has a
nonzero Laplace transform y(\). O

Similar considerations can be carried also for mild (or integral) solutions.
In the present context we say that w is a mild solution of (3.1), (3.2) if u €

C([0, ), X), fotu(s)ds € D(A) for any ¢ > 0, and
¢
u(t) =u +A / u(s)ds, t>0. (3.99)
0
As in (3.12), it is clear that U(t) = fotu(s)ds is a classical solution of the

nonhomogeneous problem

U = AU+ u, t>0,
lim U(t) = 0. (3.100)
t—0+

In particular, if u is a mild nul-solution to (3.1), (3.2) of normal type w, then
U is a nul-solution to (3.100) of the same type. We can prove the following
minor modification of Theorem 3.48.
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Corollary 3.49. Let A be a closed operator. If (3.1), (3.2) has a mild nul-
solution of type < w, then the characteristic equation

Ay(A) = Ay(N) (3.101)
has a solution y(\) # 0, which is a bounded and holomorphic function of X in
each half-plane ReX > w + €, € > 0. Again, y(\) in (3.101) can be taken as

o0

y(\) = /e”\tu(t)dt. (3.102)

0

Proof. If u is a mild nul-solution of type w, then U(t) = fotu(s)ds is a nul-
solution of the same type. Thus, by Theorem 3.48, the first part of the propo-
sition is proved with y(\) of Eq. (3.101) given by

oo

y(A) = / MU (1)t
0
Easy calculation shows that ||y(\)|| = O(A™1). Moreover,

oo

Y()) = /e”\tu(t)dt = \y(N),
0

hence Y () is a bounded holomorphic function for ReA > w+e¢, € > 0. Because
multiplication by A does not influence (3.101), Eq. (3.102) is proved. O

Now we investigate a relation between Cauchy problems (3.1), (3.2) and
(3.10), (3.11). Let (A, D(A)) be the generator of a Cy-semigroup (G(t)):i>o0
on a Banach space X. To simplify notation we assume that (G(t))t>o is a
semigroup of contractions, hence {; ReA > 0} C p(A).

Let us further assume that there exists an extension A of A defined on the
domain D(.A). We have the following basic result.

Lemma 3.50. Under the above assumptions, for any \ with Re\ > 0,
D(A) = D(A) @ Ker(Al — A). (3.103)

If we equip D(A) with the graph norm, then D(A) is a closed subspace of
D(A) and the projection of D(A) onto D(A) along Ker(A — A) is given by

x = Pz’ = RO\, A) (M — A)z!, 2/ € D(A). (3.104)
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Proof. Let us fix A with Re A > 0. Because A C A, then
M —ACA — A, (3.105)

and therefore Im(AI — A) = X for Re\ > 0. Because A is the generator of
a contraction semigroup, for any ' € D(A) there exists a unique = € D(A)
such that

(A — Az = (M — A)z'.
Denote P = R(\, A)(AI — A). By (3.105) it is a linear surjection onto D(A),

bounded as an operator from D(A) into D(.A) equipped with the graph norm.
Moreover, again by (3.105),

P? =R\, AN — AR\, A) (M — A) = R(\, A)(MT — A)R(\, A)(AT — A)
=R\, A)(M — A) = P,

thus it is a projection. Clearly, for ey € Ker(A —.A) we have Pey = 0, hence
this is a projection parallel to Ker(AI —.A). By [105, p. 155], D(A) is a closed
subspace of D(A) and the decomposition (3.103) holds. O

The next corollary links Theorem 3.48 with Lemma 3.50.

Corollary 3.51. If D(A)\D(A) # 0, then o,(A) 2 {\ € C; ReX > 0}. More-
over, there exists a holomorphic (in the norm of X ) function {\ € C; Re\ >
0} © A — ey such that for any A with Re A > 0, ey € Ker(A — A), which is
also bounded in any closed half-plane, {\ € C; ReX >~ > 0}.

Proof. Let u € D(A)\ D(A) and Au = f. For any A with Re A > 0, denote
gr = Au— Au and v = R(\, A)gx, then by (3.105) ¢\, = u—v € Ker(A — A).
A quick calculation gives

eh=u—v=u—RNA)(—f+)=u— AR\ A)u+ R\ A)f
— _AR(M\, A)u+ RO\, A)S.

Taking the representation e} = u—AR(\, A)u+ R(A, A) f we see that because
A — R(A, A) is holomorphic for Re A > 0, A\ — e, is also holomorphic there.
From the Hille-Yosida theorem we have the estimate ||[R(A, A)|| < 1/ReA
for ReX > 0. For any scalar function C()), the element ey = C(M\)e) €
Ker(A — A) for each ReX > 0. Thus taking, for example, C(\) = A\7!, we
obtain ey that satisfies the required conditions. 0O

Proposition 3.52. If for some A > 0 the null-space Ker(A — A) is closed
in X, then A is closed. In particular, A is closed if Ker(AI — A) is finite-
dimensional.

Proof. We know that A is closed if and only if AT — A is closed, so we prove the
closedness of A\ — A. Let 2/, — 2’ and (A — A)z), — y in X. Operating on z/,
with the projector (3.104) we obtain that x,, = R(A, A)(A—A)x], converges to
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some z € D(A) (both in X and in D(A)). Thus ey ,, = 2}, —x, € Ker(A\[—A)
also converges in X and, by assumption,

ex = lim ey, € Ker(A\ — A).

Thus

T =z +ey
and because both D(A) and Ker(AI —.A) are subspaces of D(A), we have 2’ €
D(A). Moreover, because (Al — A)z, — y in X, we have x,, = R(\, A)(A] —
Az, — R(A A)y; thus R(A\, A)y =z and (M — A)z = (M — A)R(\, A)y =
(M — A)R(\, A)y = y. This finally yields

(M — A)x' = (M — Az + (M — A)ex =y
and A is closed. O

Example 3.53. In this example we develop some ideas introduced in Subsection
3.2.1. Let us consider the Dirichlet problem for the heat equation

Ou = Au, in 2, t>0
ulpn =0, (3.106)
u‘t:O = u,

where {2 is a plane domain with a polygonal boundary, [93]. We consider this
problem in the space Lo({2). By Theorem 3.24, the semigroup for the above
problem is generated by the restriction A, of the distributional Laplacian to
the domain o

D(AQ) = {u EW%(Q), Au € LQ(Q)}
Because {2 is bounded, (As, D(A3)) is an isomorphism from D(A3) onto
L(2), [93, Theorem 2.2.2.3]. Let us denote

D = W) nW2(0).

If 2 is convex, then by Theorem 3.25, D(As) = D and we have the maximum
possible regularity. On the other hand, if the angle o« at one corner of (2

satisfies, say, m < o < 37/2, then D= I/?/%(Q) N W3(£2) is a proper subspace
of D(As3) of codimension 1; see [93, Theorem 4.4.3.3], [19, 20]. In other words,

dim Ly(2)/As(D) = 1. (3.107)

As in Subsection 3.2.1, we introduce the maximal operator A ,,q, defined to
be the distributional Laplacian A restricted to the domain

D(A2,max) = LQ,O(Q,A) = {U (S LQ(Q), Au € LQ(Q),’)/U = 0},

where the trace yu is well-defined by means of Green’s theorem (see, e.g.,
[20]). We have the following theorem, [20].



114 3 An Overview of Semigroup Theory

Theorem 3.54. The operator Ag max : L2 o($2, A) — Lo(£2) is surjective and
the kernel Ker(Agzmax) in Lo o(82, A) is isomorphic to La(£2)/A2(D).

The significance of this theorem is that because the generator Ay : D(As) —
Ly(£2) is an isomorphism, Ker(Asmax) is not trivial by (3.107) and func-
tions from Ker(Asmax) C D(Azmax) do not belong to D(As). Therefore
D(A3 max) # D(A2) and by Theorem 3.48 and Corollary 3.51, there exist
differentiable Lo (f2)-valued nul-solutions to (3.106).



4

Some Classical Perturbation Results

Verifying conditions of the Hille—Yosida or even the Lumer—Phillips theorems
for a concrete problem is quite often a formidable task. On the other hand,
in many cases the operator appearing in the evolution equation at hand is
built as a combination of much simpler operators that are relatively easy to
analyse. The question now is to what extent the properties of these simpler
operators are inherited by the full equation. More precisely, we are interested
in the problem:

Problem P. Let (A, D(A)) be a generator of a Cy-semigroup on a
Banach space X and (B, D(B)) be another operator in X. Under what
conditions does A+ B generate a Cy-semigroup on X ?

Before attempting to address this problem we point out a difficulty that arises
immediately from the above formulation. As A and B are unbounded opera-
tors, we have to realize that the sum A + B is, at this moment, defined only
as (A+ B)x = Ax + Bz on D(A + B) = D(A) N D(B), where the latter
can reduce in some cases to {0}. Also, the sum of two closed operators is not
necessarily closed: a trivial example is offered by B = —A and A + B = 0,
defined on D(A), is not a closed operator. Thus, A+ B with B = —A does not
generate a semigroup. On the other hand, the closure of A+ B that is the zero
operator defined on the whole space is the generator of a constant uniformly
bounded semigroup. This situation happens quite often and suggests that the
formulation of Problem P is too restrictive. Throughout most of this book we
try to solve the following weaker formulation of it.

Problem P’. Let (A, D(A)) be a generator of a Cy-semigroup on
a Banach space X and (B, D(B)) be another operator in X. Find
conditions that ensure that there is an extension K of A + B that
generates a Co-semigroup on X and characterise this extension.

As we have seen in the introduction, the characterisation of extensions of
A + B that generate a semigroup (in general, there can be many extensions
having this property) provides essential information on the properties of the
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semigroup and plays a role of the regularity theorems in the theory of dif-
ferential equations. It is not always an easy task — several aspects of it have
already been discussed in Section 1.2. The best situation is when K = A+ B
or K = A+ B, as there is then a close link between K and A and B. However,
there are cases where K is an unspecified extension of A + B in which case
the semigroup can display features that are rather impossible to deduct from
the properties of A and B alone.

4.1 Preliminaries — A Spectral Criterion

Usually the first step in establishing whether A + B or some of its extensions
generates a semigroup is to find if A\I — (A + B) (or its extension) is invertible
for all sufficiently large A. In this section we provide some instructive results
pertaining to this problem.

In all cases discussed in this book, in the perturbation problems, we have
the generator (A, D(A)) of a semigroup and a perturbing operator (B, D(B))
with D(A) C D(B). In general this assumption alone is too weak so that we
require that B is A-bounded; see (2.23). We start with a simple observation.

Lemma 4.1. Assume that we have two operators (A, D(A)) and (B, D(B))
with p(A) # 0 and D(B) D D(A). B is A-bounded; that is, for some a,b > 0
we have

[Bz|| < al|Az| +bllz|l, @€ D(A) (4.1)

if and only if BR(\, A) € L(X) for X € p(A).

Proof. Suppose B is A-bounded. Because AR\, A) = —I + AR(\, A), we
obtain that there is M such that for any y € X with z = R(\, A)y € D(A),

IBR(A, Ayl < al AR(A, A)yll + bILR(A, A)yll < Mlly||.

Conversely, from ||[BR(X, A)y|| < M||y||, for x = R(\, A)y € D(A) we obtain
immediately

[Bz|| < M[[(Al = A)z|| < AM ||z + M]|Az|.
O

Remark 4.2. If B is closable, then (4.1) follows from the Closed Graph Theo-
rem, Theorem 2.14; see Corollary 2.15. Also, if A is resolvent positive and B
restricted to D(A) is a positive operator, then (4.1) is valid by Theorem 2.65.

In what follows we denote by K an extension of A + B. We now present an
elegant result relating the invertibility properties of AT — K to the properties of
1 as an element of the spectrum of BLy, derived in [87]. This result was proved
in the context of positive perturbations of positive contractive semigroups, but
an important part of it uses only norm properties of the involved operators,
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and therefore, it is relevant in a broader setting. Let us recall that by p, o, o
and o, we denoted the resolvent set, point, continuous, and residual spectrum
of a given operator, respectively.

Theorem 4.3. Assume that A = p(A) N p(K) # 0.

(a) 1 ¢ o,(BR(\, A)) for any A € A;

(b) 1 € p(BR(\, A)) for some/all A € A if and only if D(K) = D(A) and
K =A+ B;

(c) 1 € o.(BR(X A)) for some/all X € A if and only if D(A) & D(K) and

K =4+ B;
(d) 1 € 0,.(BR(\, A)) for some/all X € A if and only if K 2 A+ B.

The proof of this theorem becomes clearer if we precede it with two lemmas.
In both cases we suppose that the assumptions of Theorem 4.3 are satisfied.

Lemma 4.4. Let A € A and f € X. Then R(\,K)f € D(A) if and only if
f e —BR(NA))X. In particular, for any © € D(A) there is g € X such
that

x=R(\K)(I—-BR()\A))g. (4.2)

Proof. f x = RN\, K)f € D(A), then f = (M —K)z=(AM—-A—-B)z as K
is an extension of A 4+ B. Thus, taking g = (A — A)z € X we obtain

f=(I - BR(\ A))g. (4.3)

Conversely, if (4.3) is satisfied for some f, g € X, then defining z = R(\, A)g,
we see that this equation is equivalent to

f=(W\—-A-B)z
so that
RMK)f=RMNK)AM —A—-B)x=R\NK)M — K)x =z, (4.4)
as K is an extension of A+ B. In particular, (4.2) follows from (4.3). O

Lemma 4.5. For any A € A

D(A+B) = R(\, K){I — BR(), A)X. (4.5)
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Proof. Let x € D(A+ B). Then there is f € X and a sequence (,)nen of
elements of D(A) such that lim, . 2, =  and lim,,—, .o (Al —(A+B))z, = f
in which case f = (Al — A+ B)z. Because D(A) = R(\, A)X, we can write
2 = R(X\, A)gy, for some g, € X and rewrite the latter limit as

lim (Al — (A + B))z, = lim (I = BR(\, A))gn = /. (4.6)

so that f € (I — BR(\, A))X. Moreover, by (4.2),
Tn — R(Av K)f = R()‘7A)gn - R()‘vK)f = R()‘7K)((I - BR()‘7A))gn - f)

Hence,
[n — R(A, K) fI| < [|R(A, K)[[[[(I — BR(A, A))gn — [

and by (4.6)
lim x, =2 =R(\K)f
so that x € R(A\, K)(I — BR(X, A))X. It is clear that it holds for any A € A.
To prove the converse, let © € R(\, K)(I — BR()A, A))X so that

xr=R\NK)f= lim RO\ K)f, = lim z,,

n—oo

where f,, € (I — BR(\, A))X converge to f € (I — BR(\, A))X. Thus, z, =
R\ K)f, € D(A) by (44) and z € D(A+ B). O

Proof of Theorem 4.3. (a) Let A € A. Because on D(A) we have
(M —-K)R(A\A) =N —-A—-B)R(M\A)=1—BR()NA), (4.7)

we see that, inasmuch as A is not an eigenvalue of K,
Ker (I — BR(\ A)) C Ker (R(\ A)). (4.8)

Therefore, Ker (I — BR(X, A)) = {0} so that 1 ¢ o,(BR(), A)).
(b) Writing, for A € p(A),

A — (A+ B) = (I — BR(\, A))(M — A), (4.9)

we see that invertibility of A\I — (A 4+ B) is equivalent to the invertibility of
I—BR(\A). Let A € A. If K = A+ B, then I — BR(), A) is invertible.
Conversely, if I — BR(A, A) is invertible, then we must have K = A + B as
A — K D A — (A+ B) and both are bijective.

(¢)-(d) Let us fix A € A. From Lemma 4.5 it is clear that D(A+ B) =
D(K) if and only if R(\, K)X = D(K) = R(\, K)(I — BR(\, A))X; that is,
X = (I —BR(\ A)X. Because 1 ¢ 0,(BR(\, A)) by (a), this is equivalent
to saying that D(A + B) = D(K) if and only if 1 € 0.(BR(A, A)). Finally, as
all the other possibilities are exhausted, K is a proper extension of A + B if
and only if 1 € o.(BR(\, A)).

The statements K = A+ B and K 2 A+ B do not depend on A, thus we
see that they hold for all A € A if they hold for some A € A by (4.5). O
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Corollary 4.6. Under the assumptions of Theorem 4.3, K = A+ B if one of
the following criteria is satisfied: for some X € p(A) either

(i) BR(X, A) is compact (or, if X = L1(2,du), weakly compact), or
(1) the spectral radius r(BR(A, A)) < 1.

Proof. Tf (ii) holds, then obviously I — BR(\, A) is invertible by the Neumann
series (see Remark 2.34):

118

(I — BR()\, A))™t = > (BR()\ A)", (4.10)

n=0

giving the thesis by Proposition 4.3 (b). Additionally, we obtain
R\ A+ B) =R\ A)(I —BR(\A)™ =R\ A) S (BR(AA)™. (4.11)
n=0

If (i) holds, then either BR(\, A) is compact or, in L; setting, (BR(\, A))? is
compact, [75], p. 510, and therefore, if I — BR(A, A) is not invertible, then 1
must be an eigenvalue, which is impossible by Theorem 4.3(c). O

Note that if A is resolvent positive, B is positive and A > s(A), the spectral
bound of A (see (2.61)) then (ii) is also necessary by Theorem 5.10.
If we write the resolvent equation

M—-(A+B))z=y, yeX, (4.12)
in the (formally) equivalent form
x— R\ A)Bx = R(\, A)y, (4.13)

then we see that we can hope to recover x provided the Neumann series

R(\) = > (RO A)B)"R(A, Ay = 3 RO\, A)YBR(, A)y. (4.14)

n=0 n=0

is convergent. Clearly, if (4.10) converges, then we can factor out R(\, A)
from the series above getting again (4.11). However, R()\, A) inside acts as a
regularising factor and (4.14) converges under weaker assumptions than (4.10)
and this fact is frequently used to construct the resolvent of an extension of
A+ B (see, e.g., Theorem 5.2, Theorem 6.20 or Subsection 10.5.4).

We have the following partial characterisation of this series.

Proposition 4.7. Let (A, D(A)) be an operator with p(A) # 0, (B, D(B)) be
A-bounded, and A + B be closable. Assume that for each x € X the series
(4.14) is convergent in X.
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1. 1f
lim (BR(X\, A)"x =0 (4.15)
for any x € X, then R(\) = R(\, A+ B). In particular, if A+ B is closed,
then R(\) = R(A\, A+ B).
2. If the series
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(BR(\, A))"z (4.16)

n=0
converges for any x € X, then A+ B is closed and R(\) = R(\, A+ B).

Proof. 1. By direct substitution we find

(M — A—B)>. R\, A)(BR(\, A))z =z — (BR(\, A)" Mz, (4.17)

j=0
and, as the sequence E?:OR(/\, A)(BR(A, A))z of elements of D(A) converges
in X, A+ B is closable and because A\I — (A + B) = A\l — A+ B, we obtain

(M — A+ B)R(A\)z = z.

Similarly, we have for y € D(A),

En: R\, A)(BR(M, A)Y (M —A—B)y=y— R\ A)(BR(\ A)"By, (4.18)
§=0

so that, because R(\, A) is a bounded operator, passing to the limit, we obtain
RN —A—-B)y=uy.

This is valid for y € D(A), however, as R(\) is bounded by the Banach—
Steinhaus theorem, we can pass to the closure obtaining

RN —-A+B)y=y,

for all y € D(A + B).

2. If the series (4.16) converges, then by direct substitution we find that
I—BR(\, A) is invertible and (4.10) holds. Thus by Theorem 4.3 AT —(A+ B)
is continuously invertible, yielding closedness of A+ B. 0O

Remark 4.8. By (4.18) we see that the sequence R(A, A)(BR(X\, A))"By =
(R(X\, A)B)" 1y always converges (though, in general, not necessarily to 0)
for y € D(A), provided the series (4.14) for R(A) converges.

Another interesting observation (by M. Mokhtar-Kharroubi) is that if R(\)
is the resolvent of an extension K of A + B satisfying the assumption of
Theorem 4.3 (e.g., if both A and K are generators of a semigroup), then
for y € X the sequence (BR(\, A))™y either converges to zero or does not
converge at all in X (in principle, it is possible that for some y it converges, and
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for some not). In fact, if 0 # = = lim, o (BR(\, A))"y, then by continuity,
BR(A, A)x = x, but this contradicts Theorem 4.3(a).

Finally, it can be proved that if the series (4.14) converges, then it always
defines a pseudoresolvent, [69]. However, we do not have general conditions
ensuring that it is a resolvent of an extension of A + B.

4.2 Bounded Perturbation Theorem and Related Results

The simplest and possibly the most often used perturbation result can be
obtained if the operator B is bounded. The following theorem is true.

Theorem 4.9. Let (A, D(A)) € G(M,w); that is, it generates a Co-semigroup
(Ga(t))i>o0 satisfying

IGA()|l < Me*', ¢ >0,
for somew € R,M > 1. If B € L(X), then (K,D(K)) = (A+ B,D(A)) €

G(M,w+ M| B||). Moreover, the semigroup (Ga+g(t))i>0 generated by A+ B
satisfies either Duhamel equation:

t
Garp(t)r =Ga(t)z + /GA(t — $)BG g1 p(s)xds, t>0,xeX (4.19)
0
and
t
Garn(t)a = Galt)z + / Gaip(t—$)BGa(s)eds,  t>0,2€X, (4.20)
0

where the integrals are defined in the strong operator topology. Moreover,
(GasB(t))e>0 is given by the Dyson—Phillips series obtained by iterating
(4.19):

Garp(t) = ij;OGn ), (4.21)
where Go(t) = Ga(t) and
Gnr1(t)z = /GA(t — 5)BG,(s)xds. t>0,2z € X. (4.22)

0

The series converges in the operator norm of L(X) and uniformly for t in
bounded intervals.

The proof of this theorem can be found in practically any textbook pertaining
to the theory of semigroups so we not go into details here. However, we discuss
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a few aspects of the proof which form starting points for other perturbation
results.

First, the problem is reduced to one with w = 0 by shifting the generator,
and then with M = 1 by renorming the space using the equivalent norm as
in the proof of the Hille-Yosida theorem or, because we know that A is the
generator of a semigroup (G4 (t))i>0, by simply defining a new norm by

[[z|[] = sup |G a(t)z]|. (4.23)
t>0

Next, because any bounded operator is A-bounded (with constant a = 0),
by Theorem 4.3(b) we see that A € p(A + B) if and only if I — BR(\, A)
is invertible in £(X). By the Hille-Yosida theorem this can be achieved if
RA > ||B|| as then r(BR(XA, A)) < ||BR(), A)|| < 1 in which case the Neumann
series (4.11) gives the estimate

1 1

1
< — = '
1R A+ Bl < g3 121~ ®x — | B] .

yielding the generation result.

The Duhamel formula (4.19) is obtained by considering the function
¢x(8) = Ga(t — s)Garp(s)x, v € D(A), and s € [0,¢]. As in the proof of the
uniqueness of solutions (see (3.14)) because Ga4p(s)zisin D(A) = D(A+DB),
¢, is differentiable with

d

ds
yielding (4.19) by integration and extension by density to X, which is justi-
fied as all the operators are bounded. The other Duhamel formula follows by
considering the function ¢, (s) = Gayp(t — s)Ga(s)z.

Finally, the Dyson—Phillips expansion (4.21) follows by solving (4.19) by
iterations, as for a scalar Volterra equation.

We conclude this section by presenting a relatively simple consequence of
the above results within the context of Sobolev towers. If (A, D(A)) is the
generator of a Cy-semigroup and B € L(X) then, for sufficiently large A, the
operator I — BR(), A) is an isomorphism of X. This shows that the Sobolev
tower norms of order 1

¢z(3) = GA(t — S)BGA+B(S):E

]l = (AT = A)z]],
|77 = (A = (A+ B))a|| = I( = BR(\, A))(M — A,

are equivalent on D(A).
Similarly, by writing

M—A=X—(A+B)+B=M\—(A+B)(I+R(\A+B)B),

we see that for sufficiently large A, the operator I+ R(A, A+ B)B is invertible
with
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R(\A)=(I+R(\ A+ B)B)"'R(\ A+ B).

Therefore, the Sobolev norms of order —1

|2y = IR\, A)z|| = I(I + R(\, A+ B)B)"'R(\, A + B)z||,
2|27 = RO\, A+ B)z|

are equivalent on X and lead to isomorphic completions; that is, X4, and
X ff’ B coincide. Tt follows, [79], that in general only these three levels of
Sobolev towers coincide. However, we can draw an interesting corollary.

Corollary 4.10. If (A, D(A)) is the generator of a Cy-semigroup on X and
B € L(X{") = L(D(A)), then (A+ B, D(A+ B)) generates a strongly contin-
uous semigroup in X.

Proof. By the theory of Sobolev towers, Subsection 3.1.5, the part A; of A in
D(A) generates a Cy-semigroup in X' = X{* = D(A). Thus, by the Bounded
Perturbation Theorem, A; + B generates a Cp-semigroup in X{'. However,
again by the theory of Sobolev towers, this semigroup can be extended by
density to (X{)?1™5 that, by the discussion above, is (X{))?! = X. The
generator (A; + B)_; of this extended semigroup on X is the extension by
continuity of (4,4 B, D(A;)) with respect to the norm ||z||*1 T2 = | R(\, A1+
B)z||{* TP that, again by equivalence of the Sobolev norms of order —1, is the
same as the extension by continuity with respect to [|z[|} = ||[R(\, Ay)z||i* =
|||; that is,

in X4 = X, where D(42) = X{** 5 2, — z in X" = D(A). But for such
Zn, we have Ajx, = Az, — Az in X and, by continuity of B on D(A),
Bx, — Bz, hence

(A +B) 12 = (A+ B)x.

O

A simple application of this corollary is offered by Af = f/ on X = Cyp(R)
with D(A) = C}(R) and Bf = f’(0)g, where g € D(A) is a fixed function.
Such a B is unbounded on X but bounded on D(A) and therefore A+ B is a
generator on X.

A more interesting example that appears in the context of the Boltzmann
equation with inelastic scattering is discussed in Remark 11.11.

Generalizations of the Bounded Perturbation Theorem to unbounded op-
erators B are not easy and require quite restrictive assumptions on the ‘size’
of B relative to A. In the remainder of the chapter we discuss two such gener-
alisations: one requiring dissipativity of the involved operators together with
relative boundedness of B with respect to A with bound smaller than 1, and
the other taking advantage of the ‘smallness’ of BG 4(t).
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4.3 Perturbations of Dissipative Operators

Theorem 4.11. Let A and B be linear operators in X with D(A) C D(B)
and A+ tB is dissipative for oll 0 <t < 1. If

|Bz|| < al|Az[| + bllx|], (4.25)

for all € D(A) with 0 < a < 1 and for some ty € [0,1] the operator
(A+toB, D(A)) generates a semigroup (of contractions), then A+tB generates
a semigroup of contractions for every t € [0,1].

Proof. From the Lumer—Phillips theorem and (3.43), I — (A+toB) is invertible
with the inverse Ry := (I — (A +toB))~! satisfying ||[Ro|| < 1. As 0 <ty <1,
we have for x € D(A),

[Bz|| < al|Az|| + bljz]| < af| (A + toB)x|| + atol| Bz + bz
< al[(A + toB)z|| + al| Bz|| + b]|z],

so that

¢
1Bz|| < 7= lI(A +toB)z| + 1] (4.26)

1—a
Because Ry : X — D(A) and (A+toB)Ry = (I—(I—(A+tyB)))Ro = Ro—1,
we have for any y € X,

2a + b
1—a

a b
IBRoyll < 1——II(Ro — Dyl + 17— [ Royll < lyll- (4.27)

Thus, BRy is bounded. Next, let us take some ¢ € [0, 1] and consider

I-(A+tB)=1-(A+1tyB)+ (to—t)B
= (I - (A+tyB)+ (to —t)B)Ro(I — (A+tB))
= (I + (tg —t)BRo)(I — (A +toB))

and therefore I — (A + tB) is invertible if and only if I + (to — t)BRy is
invertible. However, the latter is invertible as soon as |t — #¢|||BRy|| < 1. For
this, by (4.27) it is enough that

1—a

t—tg| < .
| ol 2a 4+ b

We see that the length of the interval on which I — (A + tB) is invertible
is independent of the starting point ¢y and therefore, by using finitely many
successive steps, we can cover the whole interval [0, 1]. Thus (A+tB, D(A)) is
a dissipative operator such that I — (A+¢B) is surjective for all ¢ € [0, 1]. It is
also densely defined because D(A) is dense and so (A + tB, D(A)) generates
a semigroup of contractions. O
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Theorem 4.12. Let A be the generator of a semigroup of contractions and
B, with D(A) C D(B), is such that A+ tB is dissipative for all t € [0,1]. If

[Bz|| < [|Az[| + bl|[], (4.28)

for x € D(A) and B* is densely defined, then A+ B is the generator of a
contractive semigroup.

Proof. A+ B is dissipative and densely defined as A is the generator. Thus,
by property (iv) of Subsection 3.2, A+ B is closable with A + B dissipative.
Hence, to prove that A + B is the generator of a contractive semigroup, it is
enough to show that the range of I — A+ B = X. Moreover, by property (iii)
of Subsection 3.2 we know that the range of I — A + B is closed, thus it is
sufficient to prove that the range I — (A + B) is dense in X.

Let us take arbitrary f € X. For any r € [0, 1) the operator r B satisfies the
assumptions of the previous theorem with a = r < 1, hence (A + rB, D(A))
is the generator of a semigroup of contractions. Thus, I — (A + rB) is an iso-
morphism by Proposition 3.18(iii) and the Lumer—Phillips theorem (Theorem
3.19). Hence for any 0 < r < 1 there is a unique solution w, of the equation

ur — (A+1rB)u, = f, (4.29)
and this solution satisfies ||u,|| < || f||. Next

[Bur| < [[Aur || + blfur || < [I(A+rB)url| + rl[Bur| + bllur||
= If = wrll + 7l| Bur || + blfur || < 2+ D) f]| + 7[| Bu|

so that
(1 =n)||Bu,|| < (2+0)[ fII- (4.30)

Taking now v* € D(B*), we have
| <v*, (1 —r)Bu,> | = (1 —r)| <B*v*,u> | < (1 —7)|[|B*0"|||Jur|
<@ =n)IB*lIfIl =0

as r — 0. The family {(1 —r)Bu, }o<r<1 is bounded and D(B*) is dense; thus
we obtain that
(1-r)Bu, — 0

weakly as r — 0. Let 0 # y* € X* satisfy
<y*,z>=0
for any 2z € Im(I — A + B); in particular
<y*,u— Au— Bu>=0. (4.31)

Because yx # 0, we can always find f € X satisfying ||y*|| =<y*, f>. Using
this f for the considerations above, we have
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Iyl = <y", f> = <y",up — (A+rB)u,>
= <y*, (1 —r)Bu,> + <y*, u, — Au, — Bu,>
=<y*, (1 —r)Bu,>—0

which gives a contradiction. O

Remark 4.13. If B is closable and X reflexive, then B* is automatically densely
defined; see (2.27).

Ezxample 4.14. We illustrate these theorems by considering the solvability of
the Cauchy problem

du(x,t) = Ox(d(x)0xu(x, 1)),
’LL(X, 0) - lol’ (X)7

in Li(R™), where we assume that d € WL (R") and 0 < dpyin < d(X) < dimax
for some constants dpin, dmax-

Consider an arbitrary function k having these properties; that is, k €
WL (R") is any function satisfying 0 < kpin < k(X) < kmax for some
Kmin, kmax and all x € R™. Accordingly we consider the operator Dju :=
Ox (k(x)0xu). As Dyu = kAu+ Oxk - Oxu we see, by (3.60), that Dy, is defined
on LLQ(Rn).

From Lemma 3.23 we see that Dy, is dissipative on C§°(R"™); that is, for
any ¢ € C§°(R™) we have

o[l < (I = Di)l| = [l — kAP — Ock - 054, (4.32)

where we used (3.42). Because C§°(R™) is dense in L »(R™) and the latter is

the domain of the Laplacian in L;(R"™), for any v € L1 2(R™) we can find a

sequence (¢m)men C C§°(R™) such that ¢, — u and A¢,,, — Au in L (R™).

Moreover, from (3.60) we see that the convergence in Lq2(R™) yields the

convergence in W (R™) and hence Ox¢,, — Oxu. Thus, by the assumption on

d, we can pass to the limit in (4.32) obtaining dissipativity of Dy, on L o(R™).
Let us return to the coefficient d and write the operator Dy as

Datt = diax At 4 Oy ((d(X) — dinax ) Oxctt). (4.33)
Defining for ¢ € [0, 1],
k(%) = dmax + t(d(x) = dmax),
we consider
Dy, u = Ox (ke (x)Oxtt) = dmax At + t0x ((d(X) — dmax)Oxtt)
so that Dy, u = dmaxAu and Dy, u = Dgu. Because clearly

(1 = t)(dmax — d(x)) >0,
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for t € [0, 1], we obtain
kt (X> = dmax + t(d(X) - dmax) Z d(X) Z dmin

so that Dy, is dissipative for all ¢ € [0, 1] by the first part of the proof. Next,
using (3.66) and (3.65),

dmax - dmin
[0 ((d(x) = dmax)Oxu)|| < ——————||dmaxAu| + SSRRL |8xd(x)|||UHW11(R")

dmax
< d'||dmax Aul| + Kellullp, oy + Kes/s_QHuHLl(Rn)
< (A% Kdrpax) || dmax Aul| + K (e + GS/S_Q)HUHLMR")’

max
where 1 < s < 2 and d' = (dmax — dmin)/dmax < 1 as dmin > 0. Thus, there
is € > 0 such that d’ + eK < 1 and we can use Theorem 4.11 to ascertain
that Dy with domain L; 2(R™) is the generator of a dissipative semigroup on
Li(R™).

Moreover, this semigroup is positive. To prove this, we note that, by Propo-
sition 3.8, this is a unique semigroup generated by an operator whose re-
striction to C§°(R™) coincides with the differential expression Ox(d(x)0x-).
Because the latter satisfies the assumptions of Theorem 3.27, the semigroup
constructed here must be the same as the semigroup specified in this theorem,
and therefore it is positive.

4.4 Miyadera Perturbations

Let (A,D(A)) generate a semigroup (Ga(t));>0 on a Banach space X. Let
us recall that B is A-bounded if and only if B € L(D(A), X) where D(A) is
equipped with the graph norm.

We say that an operator B is a Miyadera perturbation of A if B is A-
bounded and there exist numbers a and v with 0 < a < 00, 0 < v < 1 such
that

/ |BGA(t)z]dt < Al (4.34)
0

for all x € D(A).

The definition of the Miyadera perturbation is formulated for the semi-
group (G a(t))¢>0 of an arbitrary type wy. The proof, however, becomes sim-
pler if wy is negative. We know that A is the generator of (G 4(t));>0 if and
only if A — wI generates (e~ “'G 4(t))t>0 and the latter is of negative type if
w > wp, where wy is the type of (Ga(t))i>o.

Lemma 4.15. B is a Miyadera perturbation of A if and only if it is a
Miyadera perturbation of A — X, A € R, possibly with different v and «.



128 4 Some Classical Perturbation Results

Proof. Because A = (A — M) + A = (A+ AI) — A, it is sufficient to prove
the thesis for A > 0. Let for some A > 0, a > 0, and v < 1,

[l BGawald <4l « e D).
0

Now, if e**y =4/ < 1, we immediately have
(03

/ | BGA(t)z]|dt < e / e MBGA()zlldt < e®lz] = '[z]|.
0 0

Otherwise, we take 0 < 8 < « satisfying e~ = 4/ < 1, which is possible as
v < 1, so that

B B ey
/||BGA(t)as||dt < em/e"\tHBGA(t)det < em/e"\tHBGA(t)det
0 0 0

< ey lz]| = |||

Conversely, if

/ |BGA(t)zlldt < |z, =€ D(A),
0

then, for a given A > 0, we have
/e_MllBGA(t)xlldt S/IIBGA(t)xlldt <qlzl, =ze€ D(A).
0 0

O

Theorem 4.16. If B is a Miyadera perturbation of A, then (A+ B, D(A)) is
the generator of a Co-semigroup (G(t))i>o0-

Proof. Let (Ga(t))i>0 satisfy
IGA()]| < Me*t, ¢ >0,
for some M > 1,0 € R. If w’ > 0, then let us write
A+B=A—-X+B+\I

for some A > w’ so that A — A is of negative type. By Lemma 4.15 the
operator B is a Miyadera perturbation of A — Al and Al is bounded, thus
A+ B is a generator if and only if A — Al + B also generates a semigroup.
Hence, we can assume hereafter that for some w > 0,
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IGAt)] < Me=t, >0, (4.35)

Let 2 € D(A) and define

Ur(t)x = /GA(t — 5)BG4(s)xds. (4.36)
0

Setting na < t < (n + 1), we have

t (J+1)a
HmwwSM/w@mMWSMZ /nma@mw
0 =0 Jjo
=M> IBGA(r + ja)x|dr = MY IBG A(r)G a(jo)x||dr
j:00 j:00
x . ~yM?||z
< 0ol 5 [Gatio)] < 22 LEL — el (4.37)
J:

where c¢ is a constant. Therefore, for each ¢, U; (¢) extends in a unique way to a
bounded linear operator on X such that the family {||U1(¢)||}¢>0 is bounded.
We note that although U;(t) (and the functions Uj(t) defined below)
extend to bounded operators on X, the integral formula is valid only for
x € D(A).
Let us define inductively

t

U;(t)x = /Uj,l(t — 8)BG 4(s)xds. (4.38)
0
Following the estimates for {U1(¢)}+>0 we find that for each j, {U;(¢)}1>0 is
a family of bounded operators with norms uniformly bounded for any t.
The next step is to prepare ground for showing that the functions U, (t)

are strongly continuous and converge to a semigroup. We prove that for any
n and t,s > 0,

S U (H)Un—5(5) = Unlt + ), (439)
§=0
where Up(t) = Ga(t). We see that (4.39) is satisfied for n = 0. Assume that
it is satisfied for some n; then we have for x € D(A),

n+1
%Uj(t)UnJrl,j (S){l?
]:

S

= U () | Un_j(s — 1)BGa(T)wdr + | Un(t — 7)BGa(r)Ga(s)adr
So j
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s t
= /Un(t + 5 —7)BG(T)xdr + / Un(t — 7)BGA(T + s)xdr
0
S t+s
:/Un(t + 5 —7)BG(T)xdr + / Un(t+s—r)BGa(r)xdr = Uyq1(t + s)z
0 s

and by density we can extend this equality to X.

{U;(t)}+>0 is a bounded family of operators for each j, therefore we see, by
(4.34) and (4.38), that t — U, (t)z is continuous at ¢ = 0 for each z € D(A).
Using again local boundedness and the Banach—Steinhaus theorem, we obtain
that {U;(¢)}+>0 is strongly continuous at ¢ = 0 for any j. Writing (4.39) as

Up(t 4+ h) — Un(t) = Un(t)(Ga(h) — I) + "ng ()Un—; (R)

we see that strong continuity of {U,(t)}+>¢ for ¢ > 0 follows by induction.
Furthermore, using (4.35) we obtain for ¢ € [0,a] and z € D(A),

UL (B)z]| < M / | BGa(s)z]ds < Mn]lz]
0

and, by density, this estimate extends onto X. Taking now Us(t), we again
have to take x € D(A) to be able to use the integral formula, but the estimate
inside can be obtained as above, so that

[Ua(0)a] < b [ |BGA(s)slds < Moo
0

and, inductively, for j > 1 and ¢ € [0, a],
1U; (1) < M~ (4.40)

This means that Z;’;OUj(t) converges in £(X) uniformly on [0, a]. Because
of this the Cauchy product series

S U2 = X U605 (8)
n=0 n=05=0

converges uniformly in £(X) on [0, ¢]; that is, Z;‘;OU i (t) converges uniformly
on [0,2a]. Iterating the process, we obtain almost uniform convergence on
[0, 00). Define

G(t) = in(t), t € [0,00). (4.41)

Changing the order of summation we obtain
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Gli+5) = SU1+5) = 3 SU0U;-l) = U0 S U;-i)
= SUH) X Unls) = GOG(s)

so that (G(t));>0 is a semigroup. Moreover, because the functions U;(t) were
strongly continuous and the convergence is almost uniform, (G(t));>0 is a
strongly continuous semigroup. Furthermore, we have

YUjt)r =Galt)z + / Zn: Uj_1(t — s)BG a(s)xds (4.42)
0 7!

for x € D(A) and

illUj—l(t—S)BGA( s)z|| < ZIHUJ 1t = ) IBRL, AGals)I(T = A)]|

< CZ’yj < 400,
=0

for some constant C' so that we can pass to the limit in (4.42) getting the
Duhamel equation

t
G(t)r = Gal(t x—l—/G (t — s)BGa(s)xds, x € D(A). (4.43)
0

Finally, we identify the generator K of (G(t));>o. First, observe that for z €
D(A) with y = (I — A)x € X we have

H%/G(t—s)BGA(s)xds—BxH

%/HG t— $)BR(1, A)Ga(s)y — G(t — s)BR(1, A)y
+ G(t —s)BR(1,A)y — BR(1, A)y||ds

%/HG t — $)BR(1, A)Ga(s)y — G(t — s)BR(1, A)y|ds
+ %/HG(t — $)BR(1, A)y — BR(1, A)y|ds

t t
1 1
<y [1Gatsly—ylds+ 5 [ IGIBRO. Ay~ BRO, A)yldr
0 0
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for some constant C;. Hence it follows that fg G(t — s)BG 4(s)xds is differen-
tiable at ¢t = 0 for x € D(A) with

¢
%/G(t — $)BG z(s)zds|i=o = Bx.
0

The first term in (4.43) is clearly differentiable for x € D(A), therefore we get
Kz = Az + Bz, x € D(A);

that is, K D A + B. To show that they are equal, we use Theorem 4.3.
The intersection of p(K) and p(A) is not empty as they are both generators.
Thus, for equality K = A+ B, it is sufficient and necessary to have BR(\, A)
invertible for some A € p(A) N p(K). Let 2 € D(A); then we have

BR(\, A)z = BR(1, A) / e MGA)(I — A)zdt = / e MBGA(t)xdt
0 0

for any A > 0, as BR(1, A) is bounded. Then, as in (4.37),

oo (j+1)e
/e_’\tHBGA(t)det: > e_’\t||BGA(t)x||dt
0 J=0 Jjo
= /e*)‘(THQ)||BGA(T)GA(ja)x||dT§ Z67)\(”./||BGA(T)GA(ja)1‘||dT
=0 =0
0 0

Mef()\%»w)oz
<zl {1+ T oo

Because v < 1 and e~ (*t9)® can be made arbitrarily close to 0 by taking
sufficiently large A\, we see that, by density, | BR(A, A)| < 1 if X is large
enough so that I — BR(\, A) is invertible and K = A+ B. O

Remark 4.17. It is worthwhile to mention important generalisations of the
Miyadera theorem to time-dependent coefficients in [127, 143] and to positive
integrated semigroups in [157, 158]. The analysis of [127] extends to the con-
servative case along the lines of Section 5.2 without, however, characterising
the generator.
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Positive Perturbations of Positive Semigroups

In most perturbation theorems of the previous chapter an essential role was
played by a strict inequality in some condition comparing A and B (or
(G4(t))i>0 and B). This provided some link between the generator and both
operators A and B, and ensured that the semigroup was generated by A + B
or, at worst, by A + B. In many cases of practical importance, however, this
inequality becomes a weak inequality or even an equality. We show that in
such a case we can still get existence of a semigroup albeit we usually lose
control over its generator that can turn to be a larger extension of A + B
than A 4+ B. In such a case the resulting semigroup has properties that are
not ‘contained’ in A and B alone. This is discussed in the next chapter. Here
we provide the generation theorem, obtained in [44], which is a generalisation
of Kato’s result from 1954, [106], as well as some of its consequences. In the
second part of this chapter we shall discuss generalisations of Miyadera’s and
Kato’s theorem in the space L1, that, due to its AL-structure, offers a partic-
ularly rewarding setting for this theory. Also, it is the most important setting
for applications related to Markov processes. In both sections a crucial role is
played by the positivity of the involved operators.

5.1 Generalized Kato’s Perturbation Theorem

Lemma 5.1. Let 0 # = € X . Then there is x* € X7} satisfying ||z*[ = 1
and <z*,r>= ||z

Proof. We have |z = supj,. j<; < y*,z >=< z%,2 > for some z* €
X*, ||lz*|| = 1, by the Hahn-Banach theorem. If 2* ¢ X}, then
0 < |lz|| = <x™, 2> =<al, 2> — <o’ o> < <, x>

and |lz% || < [|o*]| < 1 as 2% < |o*]. Thus, <a¥,z>=<z*,x>= |z|. If
2% || < 1, then T* = |7 || 'a% satisfies ||2*| = 1 and <Z*, 2> > <z*,z>
which is impossible. Thus, z% satisfies the conditions of the lemma. O
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Theorem 5.2. Let X be a KB-space. Let us assume that we have two oper-

ators (A, D(A)) and (B, D(B)) satisfying:

(A1) A generates a positive semigroup of contractions (Ga(t))e>o,

(A2) r(BR(A, A)) <1 for some X > 0(= s(4)),

(A3) Bz >0 forxz € D(A)4,

(A4) <z*,(A+ B)x>< 0 for any x € D(A)1, where <z*,z>= ||z,
z* > 0.

Then there is an extension (K, D(K)) of (A + B,D(A)) generating a Cop-
semigroup of contractions, say, (GK(t))tZO. The generator K satisfies, for
A>0,

RO\ K)z = lim R\, A)éO(BR(A,A))”x - g;OR(A, A)Y(BR, A)"x
(5.1)

Remark 5.3. If —A is a positive operator, then assumption (A2) can be re-
placed by the simpler one:

(42') [Bx| < [[Az|, =€ D(A);.
In fact, we then have
0<—AN - A) ' =T- MM -A)'<T

so that ||AN — A)~y|| < |jy|| for all y € X and consequently for any y € X
by Proposition 2.67. Thus, ||Az| < |[(A] — A)z|| for all z € D(A). Hence, for
any © € D(A)4,

[Bz|| < [|Az]] < [[(AT — A)z]],

which, upon substituting z = (A — A) ™1y, yields || B(AI — A)~ty| < ||ly|| for
y € X4 and thus [|[B(A — A)7!|| < 1. Hence, (A2) is satisfied.

Remark 5.4. If assumption (A2) is satisfied for some Ag > 0, then it is satisfied
for all A > Ag. In fact, using the positivity in the resolvent equation

RO\ A) — BR(Ag, A) = (Ao — N BR(Ao, A)R(N, A),

we get BR(Ag, A) > BR(\, A) > 0 and the norm estimate follows by Remark
2.68.

Proof of Theorem 5.2. We define operators K, 0 <r <1 by K, = A+ rB,
D(K,) = D(A). By writing

(M —A—7rB)= (I-rB(\—A)"") (A — A),

we see that as, by (A2), the spectral radius of rBR(\, A) does not exceed
r < 1, the resolvent (\[ — (A +rB))~! exists and is given by
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R\K,) =M — (A+7rB))~' = R\, A) S, r" (BR(M\, A)", (5.2)
n=0
where the series converges absolutely and each term is positive. Let 0 < x*
satisfy <z*, x> = ||z||; see Lemma 5.1. For x € D(A), we have, for r < 1,

<z*,(A+rB)z>=<z*,(A+ B)x> +(r — 1) <z*, Be> <0 (5.3)

because of (A5) and because Bx and z* are both nonnegative. Thus, by the
above,

[ — Kp)z|| > <a™, (M — Ky )z>= A<a™, 2> — <z*, K,x> > M|z,

for all x € D(A)4. Taking y € X, we have (A — K,)"ly = 2 € D(A)4 so
that we can rewrite the above inequality as

IR Kyl < A7yl (5-4)

for all y € X and, because R(\, K,.) is positive, (5.4) can be extended to the
whole space X by Proposition 2.67. Therefore, by the Hille-Yosida theorem,
for each 0 < r < 1, (K,, D(A)) generates a contraction semigroup which we
denote (G(t))s>0-

From (5.2) we see that the net (R(\, K, )x)o<r<1 is increasing as r T 1 for
each x € X1 and {||R(X\, K, )z|/}o<r<1 is bounded. As we assumed that X is
a K B-space, there is an element y) , € X such that

lim R\ Ky )x = yrg

r—1-

in X. This convergence can then be extended onto the whole space by linearity,
and by the Banach—Steinhaus theorem we obtain the existence of a bounded
positive operator on X, denoted by R(\), such that R(A)z = y» ,. To be able
to use the Trotter—Kato theorem, Theorem 3.43 together with Corollary 3.44,
we have to prove that for any x € X the limit

)\ILH;O AR\, Ky )x =2
is uniform in r. Let © € D(A). Then, as
K,.R(\K,)=1-AR\ K,),
we have, by (5.4),

INRON, Kz — ]| = KR\ K)ol = [RO Ko) Kyl < ATH(A + rB)a|
< AT ([ Az + [|B=l)

so that the convergence above is indeed uniform in r. Because D(A) is dense
in X, for y € X we take x € D(A) with ||y — z|| < € to obtain, again by (5.4),
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AR, Ky )y = yll < MR Kp)(y — o)l + lly — 2] + [AR(A, Ky )z — ]
< 2¢ + A7 (|| Az + || Bx])

which gives uniform convergence. Using the Trotter—Kato theorem, we obtain
that R(\) is defined for all A > 0 and it is the resolvent of a densely defined
closed operator K which generates a semigroup of contractions (G (t))i>0-
Moreover, for any = € X,

Hr{l G.(t)xr = Gg(t)x, (5.5)
Bl

and the limit is uniform in ¢ on bounded intervals and, provided x > 0, mono-
tone as r T 1 (monotonicity of the sequence follows from the monotonicity
of resolvents in r and the representation formula (3.22) for semigroups). To
complete the proof we have to show that K is an extension of A+ B satisfying
(5.1). By the monotone convergence theorem, Theorem 2.91, we have

R\ K)zx = fj (N, A)(BR(\, A)rz, zeX. (5.6)

Next we note that the nth partial sum R(™) () of (5.6) satisfies the following
recurrence relation

R™(\y = RO\ Ay + RN A) S (BRO, A)F1BR(A, A)y
k=1

— RO\ Ay + (R(A,Aff(BR(A, A))‘“) BR(\ A)y

k=0
= R\, Ay + R"Y(NBR(A, Ay

so that, for y = (Al — A)x,x € D(A), we have
RM™W\)(M — A)z =z + R"Y(\)Bz.
Passing to the limit with n we obtain
R\ K)(A — A)x =x + R(\, K)Buz; (5.7)
that is
RMNK)YAM —(A+B)x==x

which shows that K D A+ B. O

From the proof of Lemma 4.1 it is evident that the assumption (A2) of
Theorem 5.2 is stronger than the assumption that B is A-bounded, used in
Theorem 4.12. Thus, it is worthwhile to compare Theorem 5.2 with Theorem
4.12 (and also with the similar Theorem 4.11).

In the current context of positive semigroups and perturbations, we can
strengthen Theorems 4.11 and 4.12 as follows (see [45]) .
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Proposition 5.5. Let (G(t))i>0 be the semigroup generated by A + B or
A+ B under conditions of Theorems 4.11 or 4.12, respectively. If A is a
resolvent positive operator and B is positive, then (G(t))i>o s positive.

Proof. Let us first assume that a < 1 so that (G(t)):>o is generated by A+ B.
The first step of the proof of Theorem 4.11 is to show that if I — (A + toB)
is invertible for some ty € [0, 1], then I — (A 4 tB) is also invertible provided
|t — to| is small enough. Here we strengthen this result by showing that if the
resolvent R(AI, A + toB) is positive for some A, then also R(A, A + tB) is
positive for ¢ sufficiently closed to #g.

Let us fix A > 0. Using (4.26) with the estimate ||R(\, A + toB)| < 271,
we obtain the following version of (4.27),

2a+ A1

<
IBROLA + 1B < 2252

which yields, via the identity
M—(A+tB)=(I - (t—tg)BR(A\, A+t B))(A\ — (A+tyB)), (5.8)

invertibility of A\I — (A + tB) provided ||(t — to) BR(A, A + toB)|| < 1. Hence,
A — (A +tB) is invertible provided [t — to| < A(1 — a)/(2Xa + b). Because
a < 1, the right-hand side of the inequality is positive and independent of %,
and so every point of [0, 1] can be reached in a finite number of steps, showing
the invertibility of AT — (A 4 tB) for any t € [0, 1]. For our purpose, we use
the Neumann series to rewrite (5.8) as

R\, A+tB) = R\\, A+ toB)(I — (t —to) BR(\, A + t,B)) ™"

(t —to)*(BR(\, A+ tyB))*.  (5.9)

hE

= R(\, A+1tyB)

~
Il

0

Hence, if we start from to = 0 with positive R(A, A), then R(\, A 4+ tB) will
be a positive operator for any 0 < ¢ < A(1 — a)/(2Aa + b). Repeating the
procedure finitely many times in the direction of increasing ¢ we obtain finally
that R(A, A+ B) is also positive and, because A > 0 is arbitrary, the semigroup
generated by A + B is positive.

Let us consider now the case a = 1 so that all the assumptions of Theorem
4.12 are satisfied. Considering the operators A + rB with the same domain
D(A), we see that all the semigroups (G (t)):>0 generated by A+rB are pos-
itive semigroups of contractions by the previous part of the proof. Moreover,
for each x € D(A) we have

lim (A4 rB)x = (A+ B)z.

r—1-

Let us recall that the proof of Theorem 4.12 consists in showing that the range
of I—(A+B) is dense. We can now use Theorem 3.45 to see that the semigroup
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(G())¢>0, generated by A + B, is the limit of semigroups (G (t))i>0 asr — 1,
that are positive by the previous part of the proof, and hence (G(t)):>o is also
positive. O

Thus, if X is reflexive and B is closable, then Theorem 4.12 is evi-
dently stronger than Theorem 5.2 as the former requires positivity of neither
(G 4(t))i>0 nor of B. Moreover, in Theorem 4.12, we obtain the full character-
isation of the generator as the closure of A + B. However, checking the clos-
ability of the operator B in particular applications is often difficult, whereas
the positivity is often obvious. Also, there is a large class of nonclosable op-
erators which can nevertheless be positive, for example, finite-rank operators
(in particular, functionals) are closable if and only if they are bounded, [105,
p.166]. Moreover, Theorem 5.2 gives a constructive formula (5.1) for the resol-
vent of the generator, which seems to be unavailable in general case, and this,
in turn, allows other representation results that are discussed below. Also,
what is possibly the most important fact, in nonreflexive spaces Theorem 5.2
refers to a substantially different class of phenomena because, as we show in
the next chapter, in many cases covered by this theorem the generator does
not coincide with the closure of A + B.

Remark 5.6. Yet another look at the relation between K and A + B in spaces
L, is offered by the result of [152] that states that if T" is a positive operator
on L, satisfying [|T']] < 1 and p € (1,00), then there exists a primitive nth
root of unity in o,(T) if and only if every nth root of unity is in o, (7T") if
and only if the same holds true for T*. Setting T' = BR(\, A) and invoking
Theorem 4.3, we see that 1 ¢ o,(BR(X, A))* so that 1 ¢ o, (BR(\, A)) (see
Corollary 6.15) and consequently K = A + B.

A property that allows the proof for p > 1 is that x € X} and v < T™x
implies x = T*x. This property, in general, does not hold in X* = L] = L.

Proposition 5.7. Let D be a core of A. If (G(t))i>0 is another positive semi-
group generated by an extension of (A + B, D), then G(t) > Gk (t).

Proof. Let K’ be the generator of (G(t));>o. First we show that K’ is an
extension of A + B. K’ is a closed operator. If x € D(A), then there is a
sequence (2, )nen C D such that lim, .o z, = = and lim, . Az, = Az. By
(A2), we have Bz, converging to Bx so that (A+ B)x,, converges to (A+ B)z.
For z,, € D we have K'x,, = (A + B)xy, therefore € D(K') as K’ is closed.
Because K’ generates a positive semigroup, the resolvent R(X, K') exists
and is positive for sufficiently large A\. As D(K') D D(A), we can consider

RO\ K') — RO\ K,) = (RO KM — K,) — R(\, K,)
= RO\ K')(\ — K, — M\ + K')R(\, K,) = RO\, K')(K' — K,)R(\, K,)
= R\ K')(A+ B—A—rB)R\\K,) = (1 —r)R(\, K')BR(\, K,)

thanks to K’z = (A + B)z on D(A). Because r < 1 and all the operators are
positive, we obtain
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ROLK') > ROV K,).
Because R(A, K,) T R(\, K), we have R(A\,K') > R()\, K) and by (3.22) we
obtain that this inequality holds for semigroups. 0O

Corollary 5.8. Under the assumptions of Theorem 5.2, the semigroup (Gk (t))i>0
satisfies the Duhamel equation

Gr(t)z = Galt)z + / Grlt— )BGA(s)eds,  z€D(A).  (5.10)
0

Proof. For x € D(A) we have
d
%GA(t)x = AG4s(t)xr +rBGa(t)xr —rBGA(t)x
so that, as the operators K,, = A+rB with domains D(A) generate semigroups

of contractions (G, (t))¢>0, by the Duhamel equation (3.74), we must have

Ga(t)r = Gr(t)x — T/Gr(t — 8)BG A(s)xds
0

and therefore we obtain the Duhamel equation for (G, (t)):>0
t
G (t)xr =Gat)+ r/GT(t — 8)BG 4(s)xds. (5.11)
0

We know that (G,(t))i>0 strongly converges to (Gk(t)):>o uniformly in ¢ on
bounded intervals. To show the convergence of the integral term, we note that

t
11— /Gr(t—s)BGA(s)xds <1 —=r||BRAA)|IAM = A)z||, A>0
0

as the semigroups are contractive; thus the expression above converges to 0
as r — 1. Hence, it is enough to estimate

t t

/Gr(t — $)BG z(s)xds — /GK(t — $)BG z(s)xds
0 0

§/||(Gr(tfs)fG’K(tfs))BGA(s):cHds.
0

Because © € D(A), the function s — BG 4(s)x is continuous, so that the set
{BGa(s)z; s € [0,t]} is compact and thus the convergence of the integrand
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is uniform in s. In fact, for each € we select a finite collection sq, s1, ..., S, SO
that for any s there is k with the property

IBG a(s)x — BGa(sg)z|| <e.
Then

[(Gr(t —s) = Gk (t — 5)) BGa(s)z||
< ||Gr(t = s)BGa(s)x — Gr(t — s) BGa(sk) x|
+||Gr(t — $)BG a(sk)x — Gk (t — s)BG a(sk)x||
+ |Gk (t — s)BGa(sk)x — G (t — $)BG a(s)x]]
< IBG () — BGa(sy)ell + [(Gr(t — 5) — Grclt — 5)) BGaa(s1)al
+ ||BG a(sk)x — BG a(s)z|| < 3e, (5.12)

independently of s, where the second term estimate is uniform due to the
uniform convergence of semigroups. This shows that we can pass to the limit
in (5.11) getting (5.10). O

Proposition 5.9. Let A and B satisfy the assumptions of Theorem 5.2 and
let (Bp)nen be a sequence of operators satisfying D(A) C D(B,),0< B, < B,
and lim,,_,o, Bpx = Bz for any x € D(A). Then the sequence of semi-
groups (Gp(t))i>0, generated by extensions of A+ By, converges to (Gk (t))i>o0
strongly and uniformly on bounded time intervals.

Proof. First, we observe that the semigroups (G, (t))i>0 exist as the pairs
A, By, satisfy assumptions of Theorem 5.2 (dissipativity follows as in the proof
for rB). Denote by K, the generator of (G, (t));>o. Taking resolvents, we
immediately see that for x € X,

R\ Kp)x = ZR()\ A)(B,R(\, A))'x < ZR()\ A)(BR(\, A))'x
=0 i=
Second, because ||Bn,R(\ A)|] < 1, each term of the first series converges,
respectively, to R(\, A)(BR(\, A))%z (see (3.90) of Theorem 3.43). Thus, using
the dominated convergence, Theorem 2.91(ii), we obtain
lim R(\, Kp)z = R\, K)z

for x € Xy and also for x € X. Thus by the Trotter-Kato theorem we have
strong convergence of (G, (t))i>0 to (Gk(t))i>0. O

We conclude this section by a powerful theorem giving definitive conditions
for invertibility of AI — (A + B) and showing, in particular, that for positive
R(\, A) and B the condition of Corollary 4.6 is also necessary.
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5.1.1 Resolvent Positive Operators

In this subsection we show that it is possible to strengthen results of Propo-
sition 4.7 if we work with positive operators. We have the following general
theorem ([164]).

Theorem 5.10. Assume that A is a Banach lattice with order continuous
norm. Let A be a resolvent positive operator in X and A\ > s(A). Let B :
D(A) — X be a positive operator. Then the following are equivalent,

(a) r(B(M — A)~1) < 1;
(b) X € p(A+ B) and (A — (A+ B))~! > 0.

If either condition is satisfied, then

A —A—B) = (A — Ay 'S (B —A—B)" )" > (A — A)~L. (5.13)

n=0

Proof. By Theorem 3.34 (or Remark 3.35), R(A\,A) > 0 for A > s(A). Let
A > s(A) be such that r(B(A — A)~!) < 1. Consider the problem: for y € X
find € D(A) such that

Az — Az — Bx =y. (5.14)
Defining z = Az — Az we rewrite (5.14) as
z2—BWM —-A)"l2=y (5.15)

so that
(B(M — A)~ )"y,

118

2= (- B\ — A"ty =
0

M — A)71) < 1. Hence

—~ 3

where the series is convergent because r(B
v = (L= A)71 3 (B - A)~1)y
n=0

and consequently
WM —A-B) ' =\ — A3 (BOA — A" = (A - AL >0.
n=0

Conversely, let A > s(A) be such that (A\] — A — B)~! exists. Then we have

(M — A—B)S° (M — A (BT — A)~1y"

n=0
=\ = A=B)(M =A™+ (M = A)TH(BA - A) ) +--)
=I—-BM —A)'+ B\ - A — (B - A)~H)?24...
=1—(B(M —A)~HN*,
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hence
N
S (M~ A (BT = A7) = (M~ A~ B)"M(I — (B(\ — 4) )N+
n=0
so, applying B to both sides, we obtain

N+1

ST(BOM —A)™H" =B\ — A—B)"Y(I — (B(\ — A)~H)NTh
and
N+1
ST(BM —-A)™H"<BWM—-A-B)™ L. (5.16)

From this it follows immediately that the series on the left-hand side converges
for any x € X, as we assumed that the lattice has order continuous norm.

For any fixed € X we have ||[(B(AI — A)~!)"z|| — 0 as n — oo and
therefore the series

S ) (B(AT — A)~1y
n=0

converges absolutely for any |u| > 1. Incidentally, from the Banach—Steinhaus
theorem we obtain boundedness of {||(B(A —A)~1)"||},,>0, so that the series
converges also in the uniform operator topology. Thus, by (2.58),

(I = BT = A7)~ = S (BT - A7) (517)
n=0

exists and hence {u € C; |u| > 1} C p(B(M — A)~1). Therefore o(B(\ —
AN c {u € C; |u| < 1}; hence, by Theorem 2.33, r(B(A — A)~! < 1.
Using (5.17) and (5.16) we get

(Wl =B — A" ' < I+ B\ —A—B)™

thus
(I = B — A" < I+ B - A-B)™Y

for 4 > 1 and therefore

sup ||(uI — BOM — A)™H) 7| < 0. (5.18)
p>1

On the other hand, we know, from Theorem 2.93, that the spectral radius
belongs to the spectrum so that, if 7(B(AI — A)™) =1 € o(B(M — A)~1),
then by Theorem 2.35, the above supremum would be infinite. O

Proposition 5.11. Assume that A is resolvent positive for X > w and B is
positive on D(A). Let an extension K of (A+ B, D(A)), the resolvent of which
is given by
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M —K) ' f =S (M—-A) B - A)~"f, fex (5.19)
n=0
generate a semigroup. Then K = A+ B if and only if

S= S [BOT - A))'f (5.20)

n=0
converges for any f € X and any (some) A\ > w.

Proof. First, we note that if the series (5.19) converges for any f € X, then
K, defined by it, is an extension of A+ B due to (5.7).

Sufficiency. Follows directly from Theorem 4.3 and Proposition 4.7, as
summability of S yields invertibility of I — BR(\, A).

Necessity. If K = A+ B, then A + B is resolvent positive for A > 0 and
therefore r(BR(A, A)) < 1 by Theorem 5.10 and therefore S converges. 0O

5.2 Perturbation Results in L; setting

5.2.1 Desch Perturbation Theorem

The results of this section were first formulated in [73] and later simplified by
Voigt in [164].
We start with a weaker version of Desch’s result.

Lemma 5.12. If A is the generator of a positive Cy-semigroup in X = L1(£2)
and B € L(D(A),X) is a positive operator such that for some X\ > s(A) we
have | B(A — A)~Y|| < 1, then (A+ B, D(A)) generates a positive semigroup.

Proof. Let 0 < 2 € D(A). Due to the additivity of the norm on the positive
cone, we have

oo

/||e*”BGA(t)x|\dt: B/e*“GA(t)dt
0 0
=B — A)" a|| < [|BOT — A)~ ||,

therefore, for all a > 0
/ le > BGA(t)alldt < 2] (5.21)
0

for x € D(A), with v = || B(A[ — A)~!|| < 1. If we prove (5.21) for arbitrary
x € D(A), then B is a Miyadera perturbation of A by Lemma 4.15. Let
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x € D(A) and * = x4 — xz_. Because x4 are not necessarily elements of
D(A), we approximate them by

1/n
Tyt =N / G A(t)x+dt;

0

see (3.6). We have z,, + — x4 in X and also x,, 4 — x,,_ — z in the graph
norm of A as

1/n
Al@p 4 —2n,—)=n / G4(t)Axdt.
0
Therefore we have
J e BGa® @t — )it <A (onell + on ) (52)
0
with the right-hand side converging to |||z||| = ||z||. For the left-hand side

denote y, = (A — A)(xp, 4+ — xp,—) for a fixed A > s(A) and
y= lim y, = R(\, A)x.
Hence, we can write

lle"BR(X, A)G a(t)ynll — le” " BR(X, A)Ga(t)yll|
< e MBR(A, A)Ga(t)yn — e MBR(\, A)Ga()y]|
< Me"“=MBR\, A)| lyn — yll

so that the convergence of the integrand in (5.22) is uniform in ¢. Thus the
integral converges to

/||e’MBGA(t)szt
0

which shows that

/ le M BGA(t)z]| < vz (5.23)
0

for any x € D(A) and hence B is a Miyadera perturbation of A. O

Now we are ready to prove the main theorem of this subsection.

Theorem 5.13. Let A be the generator of a positive Cy-semigroup in X =
L1(2) and let B € L(D(A),X) be a positive operator. If for some X > s(A)
the operator \I — A — B is resolvent positive, then (A+ B, D(A)) generates a
positive Cy-semigroup on X.
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Proof. From Theorem 5.10 we know that r(BR(A, A)) < 1 and the resolvent
of A+ B is given by

(M —A—B)y ' = (A= A)" '3 (BT = A1) > (A — A) !
n=0

Replacing B by sB with s € [0, 1], we have by the above
M—-A)P<AMN-A-sB) ' <M -A-B)"!

Because B is positive and the range of (\] — A — B)~! is D(A), the operator
B(M — A — B)~! is bounded and hence we can find n € N such that

BN — A—B)~ Y| <n.

Then
I B — (A+sB))™![ < 1

for any s € [0, 1]. In particular,

. —1
In~'B ()\I - (A + iB)) | <1

for j =0,1,2,...,n — 1. This allows us to use Theorem 5.12 for the pertur-
bation n~! B repeatedly for A, A+ B/n,..., A+ (n—1)B/n obtaining in the
last step generation by A+ B. O

The Desch theorem, Theorem 5.13, is in fact equivalent to the Miyadera
theorem (in the Theorem 5.12 version). This is due to the fact that, for any
operator C' with r(C') < 1, we can introduce an equivalent norm on X = L;({2)
for which ||C]| < 1. We have the following lemma ([134]).

Lemma 5.14. Let C be a positive operator with r(C) < 1. Then there is an
equivalent norm || - |1 on X which is additive on the positive cone and for
which the operator norm of C' is strictly smaller than 1.

Proof. If r(C) < 1, then from the definition of the spectral radius, there is
0 < ¢ <1 and ng € N such that for n > ng we have |||C"||| < ¢", where || - |||
denotes the operator norm inherited from || - ||. We take d with ¢ < d < 1 and
define for z € X,

HC%H
ol = 3 220,
n=0
Because C, and consequently C™, are positive, and || - || is additive on the
positive cone, || - ||1 has the same property. Clearly, ||z|1 > ||| and
& |C | met|Cn | S (el

Hx||1=27—2 an +

n=0 n=0 n=ng+1 dn
"

cn S
<fol (B, £ ) < wrjal

n=ng+1
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where M is finite due to ¢ < d. Finally,

||C"+1w|| & [lIem e ||C"96||
|Clly = Z =d) —0s dZ = df|z([x
n=0 d =0
so that the operator norm of C inherited from || - ||; is smaller than 1. O

Corollary 5.15. Let (G(t))i>0 be the semigroup generated by (A+ B, D(A))
(according to Theorem 5.18). Then (G(t))i>0 satisfies the Duhamel equation
(4.20) and is given by the Dyson—Phillips expansion (4.21).

Proof. From Lemma 5.14 we see that we can re-norm X in such a way that
IBR(A, A)|| < 1 so that the semigroup obtained in Theorem 5.13 is a semi-
group generated by a Miyadera perturbation as proved in Theorem 5.12.
Hence, the statement follows from the Miyadera perturbation theorem, The-
orem 4.16; see Egs. (4.41) and (4.43). O

Corollary 5.16. Assume that A is the generator of a positive Cy-semigroup
in X = L1(12) and let B = B+ — B_ be such that A+ (B4 + B_) is resolvent
positive. Then A+ By — B_ generates a semigroup.

Proof. Let A > s(A). For z € X we have

S R(A, A)((Bs — BOR(N A)ya| < ZZ()R(A,A)((B+ +B_)R(\, A))

j=0
<N —-A-B, -B_) 'z

Using additivity of the norm on the positive cone we obtain
ZOIIR(/\7A)((B+ — B_)R(\ A)) x| < ||(M = A= By — B_) 4|
=

hence the series is absolutely convergent for any x € X. Because | BR(X, A)|| <
(B4 + B_)R(X, A)|| and the spectral radius of the latter is strictly smaller
than 1 (by Theorem 5.10), we obtain that also Z;”;O((BJr — B_)R(\, A))x
converges. Thus, by Lemma 4.7, 1 and 2, we see that Z;LZOR(/\,A)((B+ -
B_)R(\, A))7x converges to the resolvent of A+ By — B_. Hence

A—A—B)"'z = SR\ A)((Bs—B_)R(\, Az < M —A-B, —B_)"'a.
=0

Iterating and using the Hille-Yosida theorem for A + (B4 + B_), we obtain
AL =A=B)™"| < MAXA—-w)™

for some M and w. Because (A, D(A)) is densely defined, so is (A+ B, D(A)),
and closedness of it follows from the existence of the resolvent. 0O
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5.2.2 Kato’s Theorem in L; setting
In the original L; setting Theorem 5.2 can be significantly simplified.

Corollary 5.17. Let X = L1(§2) and suppose that the operators A and B
satisfy

1. (A,D(A)) generates a substochastic semigroup (G a(t))i>o0;
2. D(B) D D(A) and Bu >0 for u € D(B)4;
3. for allu € D(A)+

/(Au + Bu)dp < 0. (5.24)
£

Then the assumptions of Theorem 5.2 are satisfied.

Proof. First, assumption (5.24) gives us assumption (A4), that is, dissipativity
on the positive cone. Next, let us take u = R(\, A)z = (A\[—A) "'z forz € X
so that u € D(A)4. Because R(A, A) is a surjection from X onto D(A), by

(A+ B)u= (A+ B)R(\, A)z = —z + BR(\, A)z + AR(\, A)z,

we have

rdp+ /BR()\,A)CL‘ dp + )\/R(/\, A)xdu <0. (5.25)
Q Q

b\

Rewriting the above in terms of the norm, we obtain
AR, A)z|| + [BR(A, A)zf| — [lzf| <0, e Xy, (5.26)
from which ||BR(A, A)|| < 1; that is, assumption (A2) is satisfied. O

The Dyson—Phillips expansion seems to be unavailable for semigroups gen-
erated under the assumptions of Theorem 5.2 in general K B-spaces. However,
it can be proved in the L, case. We precede the proof of this fact by a lemma
giving an important estimate of the semigroup (Ga(t)):>o-

Lemma 5.18. Suppose that the assumptions 1 to 3 of Corollary 5.17 are sat-
isfied. Then, for any u € D(A) the function t — BG s(t)f is continuous and

J1BGAulds < ] - [Gate)ul. (527
0
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Proof. Let u € D(A). We can write
BG A(tyu = B(I — A)"'Ga(t)(I — A)u,

hence the continuity follows from boundedness of B(I — A)~! and strong
continuity of the semigroup.

In the next step we prove (5.27). Let u € D(A);. Then 0 < Ga(s)u €
D(A) C D(B) and, because B is positive on its domain, we obtain, by (5.24),

t ¢ ¢
/||BGA(s)u||ds = //BGA(s)ududs < —//AGA(s)ududs
0 0 0 00

= —//tAGA(s)udsd,u = /udu—/GA(t)ud,u
2

Q0 2
= [[ull = [Ga(®)ull.
Let us take now arbitrary u € D(A). In general, |u| ¢ D(A), therefore we

consider the regularisation R,|u| = n 01 "G 4(s)|u|ds. Because |u| € X, 0 <
R, |ul € D(A), (see (3.7)), and |Ryu| < Ry,|u|, thus, as above

t t
/IIBGA(S)RnUIIdS S/HBGA(S)RnlullldS < Balulll = 1G a(8) R ful]l
0 0

Using (3.6) we obtain that R,|u| — |u| in X, whereas R,u — u in D(A).
Passing to the limit, we have

t
/IIBGA(S)UIIdS <l = IGa@®lulll,
0

where, to be able to pass to the limit in the first integral, we used the Lebesgue
dominated convergence theorem and the estimate
1/n
|BGA(t)Ryu| = |nB(I — A)7 G A(t)(I — A) / G a(s)uds||
0
< (Iull + [n(Ga(1/n)u — u)|])
< ([lull + G a(0)Aull) < (lull + | Aul]),
for some 0 < § < 1/n. In the above we again used (3.7).
Next, because G4 (t)|u| > |Ga(t)ul|, we obtain —||Ga(t)|u]|| < —||Ga(t)u|l,
and the lemma is proved. O
Remark 5.19. In the presented form, the lemma is a slight generalisation of

[161, Lemma 1.2] and of [14, Lemma 1]. Note that (5.27) shows that B is a
Miyadera perturbation of A and facilitates the generation proof of [161].
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Theorem 5.20. If the assumptions of Corollary 5.17 are satisfied, then the
semigroup (G (t))i>0, generated by the extension K of A+ B, is given by the
Dyson—Phillips expansion

Gr(t)z = isn@)x, € X, (5.28)

where the iterates Sy, (t) are defined through

So(t)x = Ga(t)x,

Sp(t)x = /Sn,l(t —s)BG4(s)xds, n >0, (5.29)
0

forxz € D(A) and t > 0.

Proof. Consider K, = A+ sB for a fixed s € (0,1). Because r(sBR(\, 4)) =
sr(BR(A, A)) < 1, we can use the Desch perturbation theorem (Theorem
5.13). From Lemma 5.18 we obtain

/HBGA(t)fH <zl = [[Ga@®)z| < ||z
0
for any ¢t > 0 and z € D(A) so that
[ 1BGatt)] < . (5.30)
0

Next we observe that

Si(t)x = s/GA(t — 7)BG 4(T)zdT,
0

50, as (Ga(t))i>o is contractive,
¢

[EHO HS/GA(t — 7)BGa(T)adr|| < || (5.31)
0

independently of s. Clearly

¢
li%rll Si(t)e = S1(t)x = /GA(t — 7)BG 4(T)xdT, x € D(A)
0
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uniformly and monotonically in ¢ from bounded intervals, as in (5.12). The
right-hand side must be a strongly continuous function as it is a scalar multiple
of S (t). Moreover, from density of D(A) and (5.31), the convergence S5 (t)x —
S1(t)z is uniform in ¢ on bounded intervals for any @ € X by the Banach—
Steinhaus theorem. Now, assume that ||S2_,(¢)|| < 1and SZ_;(t)z T Sp—1(t)=
as s T 1 uniformly on bounded time intervals. We have then

155 (8)z]| </II 1(t = 7)BGa(r)z||dr < ||z

and we see that, by the induction assumption and (5.12), S (¢)2 monotonically
converges to

Sp(t)r = /Sn,l(t — 7)BGA(T)zdr,

for x € D(A), S, (t) extends to a family of bounded operators locally bounded
in ¢, and, by the Banach—Steinhaus theorem, the convergence extends to = €
X. It is also clear that the convergence S%(t) to S, (¢) is monotone as s T 1.
Thus, from the monotone convergence theorem (Theorem 2.91) we have

Gg(t)r = li%rllGS(t)x = 1i%r11 Se(t)r = Su(t)r, ze Xy.
s sTL p—0 n=0

a

The following variant of Corollary 5.16 was proved in [44].

Corollary 5.21. Assume that A is the generator of a positive Cy-semigroup
of contractions in X = L1(£2) and let B = By — B_ be such that By >
0, D(B1) D D(A) and there exists C > 0 with D(A) C D(C) such that
By 4+ B_ < C and for all x € D(A)4,

/(Ax + Cz)du < 0. (5.32)
2

Then there is an extension Kg of A + B which generates a semigroup of
contractions.

Proof. Denote |B| = By + B_. Clearly, for z € D(A) 4

/(A:c + |Blz)dp = /(Aa: + Cx)dp + /(|B|x —Cx)dp <0
o o Q

so that || BR(A, A)|| < ||B|R(A, A)|| <1, (A+7r|B|, D(A)) generates a positive
semigroup of contractions and an extension of A+ |B|, denoted by K|g|, with
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the resolvent given by (5.1), generates a positive semigroup of contractions,
as in the proof of Theorem 5.2. Thus, for f € Xy, r <1, A > 0,

RO A (BROLA) 1] < 5 ROLAY(BIEO, AV f

J

Using additivity of the norm on the positive cone, we obtain
X%)Tj\IR(A,A)(BR(A,A))ij\ < [[ROX, Kip) £, (5.33)
j=

hence the series is absolutely convergent for any f € X and any r < 1. Denote
its sum by R, (). If r < 1, then the series Y71/ (BR(X, A))’ f is dominated
by a geometric series and, by Lemma 4.7, Z?ZOTjR()\, A)(BR(X, A))! f con-
verges to the resolvent R(\, A+ rB) of the operator A+ rB, and from (5.33),

IR\ A+rB)| <A™

as K|p| is dissipative. Hence (A + rB, D(A)) generates a semigroup of con-
tractions for each < 1. From the dominated convergence theorem (Theorem
2.91(ii)) we obtain that for each f € X,

lim R(\, A +7B)f = Ri(\)f.

We now use the Trotter-Kato theorem, exactly as in the proof of Theorem
5.2. Thus, we have to prove that for any f € X the limit

/\li_}n;o ARMNA+rB)f=f
is uniform in r. Let f € D(A). Then, as
(A+rB)R(A\,A+rB)=1—- AR\ A+ rB),
we have, by dissipativity,
IAR(N, A+ rB)f — f < ATHIAf] + I BFID,

so that the limit is uniform in r. Because D(A) is dense in X, for y € X we
take f € D(A) with ||y — f|| < € to obtain, again by dissipativity,

IAR(A, A+ rB)y =yl < 2e + A ([AfIL + [ BSI)

which gives uniform convergence. Using Theorem 3.43, we obtain that Rq(A)
is the resolvent of a densely defined closed operator Kpg which generates a
semigroup of contractions (G, (t))i>0. To show that Kp is an extension of
A + B, we repeat the argument from the proof of Theorem 5.2. Denote

RO f = _iOR@, A)(BR(, A)) ,

Jj=
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and recall that Rgn) satisfies the following recurrence relation
RIS = RO A)f +RUV(NBR(A, A) .
Putting f = (Al — A)z,z € D(A), we have
RN — Az =2+ R" Y (\)Ba.

Because Rg")()\)f converges to R(\, Kpg), passing to the limit with n and
rearranging terms we obtain

R(A Kp)(M = (A+ B))z =z,

which shows that K D A+ B. 0O

5.2.3 A Direct Proof of Corollary 5.17

Corollary 5.17 can be proved using various methods. The proof presented
above was at the level of resolvents, or, using engineering language, in the
‘frequency domain’. There are several proofs at the level of semigroups, that
is, in the ‘time domain’. In particular, J. Voigt in [161] used the Miyadera
theorem to prove that the operators A+rB, r < 1 generate semigroups, which
form a monotonic and strongly bounded family with respect to r, and then
passed to a limit with » 7 1. On the other hand, in [14] the author constructs
the Dyson—Phillips iterates (5.28), (5.29) and proves directly their convergence
to a minimal substochastic semigroup. Though [14] contains the proof for a
special case of the linear Boltzmann equation, it can be easily generalised to
our abstract setting. We present this proof here as it directly establishes the
Dyson—Phillips expansion and reveals some additional structure of the limit
semigroup that can be used in applications.

Throughout this subsection we always assume that the assumptions 1 to
3 of Corollary 5.17 are satisfied.

The following result generalises Theorem 4 of [14] to a more abstract set-
ting though the key ingredients of the proof remain the same.

Theorem 5.22. Under the adopted assumptions, the Dyson—Phillips expan-
sion

Gr(t)f = ijosna)f, fex, (5.34)

where the iterates Sy, (t) are defined through

So(t)f =Gat)/f,

Su(t)f = / o 1(t— $)BGal(s)fds, n >0, (5.35)
0
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for f € D(A) and t > 0, converges uniformly in t on bounded intervals to
a positive semigroup of contractions (G'(t))¢>o which, moreover, satisfies the
integral equation

t

G't)f=Galt)f + /G'(t — 8)BG A(s)fds (5.36)

0

for any f € D(A) and t > 0. The generator K’ of (G'(t))i>0 is given by
(1=K = X (1= )7 (BU - A7), (531)
n=0

and hence (G'(t))i>0=(Gk(t))i>0, where (G (t))i>o0 is the semigroup ob-
tained in Corollary 5.17.

Proof. The structure of the proof is similar to that of the Miyadera theo-
rem (Theorem 4.16) as we construct (G'(t))¢>o through the Dyson-Phillips
expansion. However, unlike in the Miyadera theorem, here we do not have
the exponential estimate for the terms of the expansion S, (t) so that the
convergence is proved using the monotonicity and the lattice structure of L.

First, we show that S,, defined by (5.35) can be extended to a strongly
continuous family of bounded operators in X satisfying

n—1
1Sn @) FI < [1f1 = kZ:IOHSk(t)fII, feX. (5.38)

We emphasise that this inequality holds for any fixed ¢ and any fixed f. The
statement is clearly true for n = 0. Assume thus that it is valid for some
n — 1. We see that S, (¢)f is well defined for f € D(A), ast — BGa(s)f
is continuous by Lemma 5.18, S,_1(t — s) is strongly continuous, and the
composition is continuous by Proposition 2.20. To be able to extend S, (¢) to
a bounded operator on X, we prove the estimate (5.38). Let f € D(A), then,
by the inductive assumption (5.38) with n — 1 and (5.27),

ENOYE / ISu-1(t = 5)BGa(s) | ds
</ (|BGA Vil —"22||sk<t—s>BGA<s>f||) s
o k=0
<= 1Ga @51 =S [ 15ite = 5)BGaGs) s
kZOO

<171 IGas] - S “ [ sult = 9)BGaGs) s = 1151 - S I15u(0)11,
=1 -
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where we used the inverted estimate: — fot |- llds < —|| fg -ds||. Hence, the
operators Sy, (f) can be extended to bounded (contractive) operators on X
(though, in general, they will be no longer given by (5.35)).

Repeating the argument of the proof of Theorem 4.16 leading to (4.39),
we show that for any n € N, ¢, > 0, and f € X,

n

2 Si()Sn—j(s)f = Sult+s)f. (5.39)

=0

In particular, the functions ¢ — S,,(t) are strongly continuous.
Next, we observe that the estimate (5.38) yields the convergence in X of
the series

GWf = 3 Sub)f

for any f € X and t > 0, and the Banach—Steinhaus theorem shows that
(G'(t))1>0 is a family of contractions. Moreover, as in the Miyadera theorem,

Gt = S8+ 9T = 5 S 8:(0)S,(s)]

§=0 j=0i=0

= 250X 5-4(0)f = 50 3 Suls)f = G0 )S.

m=0

where the change of the order of summation is justified by the positivity of
terms for f € X and by linearity for arbitrary f € X. Hence, (G'(t)):>0 is a
semigroup. To show that it is a Cy-semigroup, take f € X, and consider

IG")f = fI < NG (@) f = Ga®) f + IGa®) f = £
ST =IGAOF + 1Gat)f = £l
Hence, fixing ¢ > 0 and taking 0 < ¢ < ¢ for which |G4(t)f — f|| < €, we get

IG"OF = FI < NI = I+ € + € = 26,

so that (G'(t))i>0 is strongly continuous.
To prove that the series is uniformly convergent on finite intervals, we use
the classical argument of Dini, as in [105, Lemma 4]. Denote

Gnlt)f = gosna)f, fex.

If the convergence G, (t)f — G'(t)f were not uniform in some finite interval
of ¢ and for some f, then there would be subsequences m,, and t,, such that
t,, would converge to some tg (as the interval is finite), lim,,— o, m, = 0o, and

1G (tn) f = G, (ta) fl| = €0 > 0 (5.40)

for some €y and all n. We can assume that f € X, as otherwise taking |f|
we would have
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G (tn)lf] = G, (E)If| = (G'(tn) = G, (E)) ] 2 (G (tn) = G, (t0)) f
as G'(tn) — G, (tn,) > 0. Clearly, the sequence (G, (t)):>0 is monotonic in m
so that the expression under the norm in (5.40) is nonnegative and hence

G ) S = G, () | = |G (tn) f = G, (tn) f]| = €0
On the other hand, for k¥ < n we have G, (tn)f < G, (t,)f and hence

G, (En) I < NG, (En) FI] < NG () F1] = €o-

If we pass with n to infinity, keeping k fixed, then using the Banach-
Steinhaus theorem, available thanks to the strong continuity of (G, (t))t>0
and (G'(t))i>0, we obtain that for any k we have

Gy (L) fIl < IG(t0) f1| — €0,

which contradicts the result that (G, (t)):>0 strongly converges for each ¢ to
(G'(t))1>0, that was proved earlier. Furthermore, we have

S8, (t)u = Galt / [t — $)BG A(s)uds (5.41)

Jj=0

HM:

for u € D(A), and by (5.38) for each s < ¢,
122 95-1(t = ) BGa(s)ull < [|BGa(s)ul,
j:

with the latter continuous by Lemma 5.18, so that we can pass to the limit
obtaining (5.36).

To prove that the semigroups (Gk (t))i>0 and (G'(t))>0 coincide, we ob-
serve that to find the generator K’ of (G'(t))i>0 we can take the Laplace
transform of (5.34) with A = 1, obtaining

(1= K)7'f = © LS00, (542
Now, for u € D(A),

L(Sn()u)(1) = L(Sn-1(t)) (DL(BG a(t)u)(1),

where we used Proposition 2.30 (applicable by Lemma 5.18). The next step
requires some care as we don’t know whether B is a closed operator. However,
repeating the trick used in the proof of Lemma 5.18, we obtain

L(BGa(t)u)(1) = LB — A)T'Ga(t)(I — A)u)(1) = B(I — A)™
by the boundedness of B(I — A)~!. Therefore, for any u € D(A),

L(So(t)yu)(1) = (I - A)~!

L(Sn(t)u)(1) = L(Sp_1(t)B(I — A)u= (I — A BI - A"

and, because L£(S,(t)u)(1) is a bounded operator, we can extend the above to
the whole of X. Thus, (5.42) coincides with (5.1). O
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Substochastic Semigroups and Generator
Characterization

6.1 Preliminaries

Most of the theory developed in the last chapter is concerned with positive
semigroups of contractions that are referred to as substochastic semigroups .
They are particularly useful for analysis of deterministic equations related to
Markov processes, where they describe time evolution of the density u(z,t) of
some quantity, where x € (2 is a state variable and (2 is a state space. If (2 is
countable, then the function u could be the probability of finding the system
in state x, but could also describe the number of particles in the system that
are in state x; for uncountable {2 we use a suitable continuous version of u. A
number of applications coming from diverse fields are discussed later in this
book.

Equations describing the evolution of u are typically constructed by bal-
ancing, for any state x, the loss of u(xz,t) that is due to the transfer of a part
of the population to other states x’, and the gain due to the transfer of parts
of the population from other states x’ to the state x. A general form of such
equations is as follows,

Oyu = Tou + Au + Bu, (6.1)

where A is the loss operator, B is the gain operator, and Ty may describe
some transport in the state space (e.g., free streaming or diffusion). The very
nature of the modelling process sketched above requires that the described
quantity should be preserved; that is, u should add up (or integrate) to a
constant independent of ¢, for instance to 1 if w is the probability density, or
to the initial number of particles in the second example mentioned above. If
this is the case, then the semigroup describing the evolution is conservative
for positive initial data and is called a stochastic semigroup. In many cases,
however, the semigroup turns out not to be conservative even though the mod-
elled physical system should have this property. Markov processes exhibiting
the latter property are well known in probability theory and are referred to as
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dishonest, [8], or explosive, [140], Markov processes. In such cases we have a
leakage of the described quantity out of the system that is not accounted for
in the modelling processes. This in turn indicates a possibility of the phase
transition during evolution and shows that the model does not provide an ade-
quate description of the full process. It seems, however, that this phenomenon
is much less understood from the functional-analytic point of view and though
a number of scattered results, often limited to a particular application, can
be found in earlier literature, [105, 161, 14, 15, 85, 6, 124, 104], a systematic
study has been initiated only recently in a series of papers, [33, 34, 39, 87, 40],
and has yielded strong results.

In many cases, however, in the modelling process a mechanism appears
that allows the amount of the described quantity to decrease. It could be an
absorbing or permeable boundary, or some reaction removing a portion of the
quantity from the system. In such a case we say that the semigroup describing
the evolution is strictly substochastic; that is, the substochasticity of it is not
caused by a dishonesty of the process. The theory of Markov processes deals
with such a case by introducing an additional state that accounts for the loss,
and redefines the process so that the resulting process is Markovian. However,
the loss-functional defining the leakage from the system carries important
information about the evolution, for example, in the fragmentation models it
describes the rate of mass loss due to internal reactions and therefore plays
a special role in the description of the process. It is thus important that we
do not amalgamate it with other states so that we can keep track of mass
loss in the evolution. Moreover, also for strictly substochastic processes, we
can have an analogue of dishonesty; that is, the described quantity can leak
out from the system faster than predicted by the loss-functional and thus it
is important to separate these two causes of leakage in the model.

We have mentioned in Section 1.2 that the property of honesty/dishonesty
of a semigroup is closely related to the characterisation of the generator of the
semigroup and therefore the functional analysis approach is very efficient in
both cases, providing sharp necessary and sufficient conditions for honesty of
the semigroup. To explain why honesty of the semigroup should have anything
to do with the characterization of the generator, let us look at a simplified
situation when (6.1) with T = 0 is supposed to model a conservative system
in X = L1(§2,dp); that is, for sufficiently regular u, say u € D(A),

/(A—i—B)udu =0
Q

(the total gain is equal to the total loss, according to our terminology from the
beginning of this section). If A generates a substochastic semigroup and B is
positive, then by Corollary 5.17, there is an extension K of A+ B generating a
semigroup of contractions, say (G (t))i>0. The problem is that in most cases
we do not have any direct characterisation of K.
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Assume now that the semigroup (G (t)):>0 is generated by (K, D(K)) =
(A + B,D(A)). Then the solution u(t) = Gg(t)up, emanating from wuy €
D(K)., satisfies u(t) € D(A)4 and, therefore, because

d

Eu(t) = Ku(t) = Au(t) + Bu(t),

we obtain that for any ¢t > 0

%m@u=/fﬁbu=/mmo+&mmw=a (6.2)

2 [0}

so that ||u(t)|| = ||uol|| for any ¢ > 0 and the solutions are indeed conservative.

If K = A+ B, then for u € D(K) there exists a sequence (up)nen Of
elements of D(A) such that u, — v and (A + B)u, — Ku in X as n — oo,
thus

/Kud,u = lim [ (A4 B)u,du=0. (6.3)

This in turn shows again that if ug € D(K)4, then u(t) = G(tu € D(K)4
for any ¢ > 0 and (6.2) takes the form

Sl = [ A~ [ Kuwd = o.
2 2

and the solutions are conservative as well. That K = A 4+ B is also the nec-

essary condition is not that clear but we prove this later, for an even more

general setting.

On the other hand, if K is a larger extension of A + B than A + B, then
the above property may not hold and there may be a loss of particles in the
evolution. In Corollary 6.12 and Theorem 6.13 we prove that this is exactly
the case.

6.2 Strictly Substochastic Semigroups

As we stated previously, in this chapter we consider only X = L1(2, du) where
(£2, 1) is a measure space. We recall that if Z C X is a subspace, then by Z
we denote the cone of nonnegative elements of Z and for f € X, the symbols
f+ denote the positive and negative part of f; that is, f; = max{f,0} and
f— = —min{f,0}. Let (G(t))i>0 be a strongly continuous semigroup on X.
We say that (G(t))i>0 is a substochastic semigroup if for any ¢ > 0 and = > 0,
Gt)xr > 0 and ||G(t)z|| < ||z||, and a stochastic semigroup if additionally
IGFI = 1] for f € X,
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Following the discussion in the Preliminaries, we consider linear operators
in X: T C Tp + A with D(T) C D(Tp) N D(A), and B, that satisfy the
assumptions of Corollary 5.17; that is,

1. (T, D(T)) generates a substochastic semigroup (Gr(t))i>0;
2. D(B) D D(T) and Bf > 0 for f € D(B)4;
3. forall f € D(T)y4,

/(Tf + Bf)dp < 0. (6.4)

2

Remark 6.1. The assumption T' C Ty+ A has its origin in the modelling process
described earlier. In principle, the process governed by A + B is independent
of the one governed by T and we should be able to construct the same theory
with Ty = 0. Thus, we should have D(A) C D(B) with [, (A + B)udu < 0
for u € D(A)4 and consequently (6.4) should hold termwise: [, (Tou + Au +
Bu)dp < 0 for 0 < uw € D(Tp) N D(A), and the assumption T C Tp + A
ensures that no new elements are introduced by grouping together T and A
to obtain the generator 7.

Under these assumptions, Corollary 5.17, Theorem 5.2, and other results
of the previous chapter give the existence of a smallest substochastic semi-
group (Gg(t))i>0 generated by an extension K of the operator T + B. This
semigroup, for arbitrary f € D(K) and ¢t > 0, satisfies

L Gxn)f = KCx()r (6.5)

The semigroup (Gk(t)):>0 can be obtained as the strong limit in X of semi-
groups (G, (t))i>0 generated by (T'+rB,D(T)) asr 1 17;if f € X, then the
limit is monotonic. It is also given as the solution to the Duhamel equation
(5.10) and by the Dyson-Phillips expansion (5.28). Moreover, the generator
K of (Gk(t))i>o0 is characterised by

o0
N -K)'f=>M-T) BN -T)'"f, f€ X, A>0. (6.6
n=0
Theorem 5.2 does not provide any characterisation of the domain of the gen-
erator K and such a characterisation plays the role of regularity theorems
for solutions of differential equations. An extensive discussion of various cases
which can arise has been provided in Section 1.2. Here we pass directly to the
general theory.
To proceed, we note that Eq. (6.4) can be always written as

/(T + B)udp = —c(u), ue€ D(T)y, (6.7)
o)
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where ¢ is a nonnegative (possibly zero) functional defined on D(T'). In this
chapter we consider only the situation when ¢ can be written as an integral
functional; that is,

ew) = [ <(@)ulz)dy, (6.8)
/

for some positive measurable function ¢ and positive measure p’. We do not
assume that c is bounded or closed.

Remark 6.2. The measure y/ may coincide with the measure p but it can also
be singular, for example, concentrated at the boundary of the domain (see
Chapter 10). The only property of p that is used throughout this chapter is
that the dominated convergence theorem holds for c.

It is important to distinguish the class of semigroups corresponding to
¢ # 0, as such semigroups cannot be stochastic but their substochasticity is
built into the model and not caused by the dishonesty of it.

Definition 6.3. A positive semigroup (G (t))i>0 generated by an extension
K of the operator T + B is said to be strictly substochastic if (6.7) holds with

c#0.
Next we extend the concept of honesty to strictly substochastic semigroups.

Definition 6.4. We say that a positive semigroup (Gg(t))t>0 (generated by
an extension K of the operator T + B) is honest if ¢ extends to D(K) and for

any 0 <ue D(K) the solution u(t) = G (t)u of (6.5) satisfies

& [ uttydi= L)) = e (ult)). (6.9)
(9]

Hence, if ¢ = 0, then honest semigroups are the same as stochastic semigroups.

Remark 6.5. We note that there is no need to restrict the definition of honesty
(6.9) to nonnegative ¢ and, consequently, to substochastic semigroups only. In
general, this definition of honesty is valid even if ¢ in (6.7) is of undetermined
sign and in this form it is used later in Section 9.3 for fragmentation models
with mass growth. The reason why we restrict ¢ here to positive functionals
only is that otherwise the existence part of the theory becomes a nontrivial
matter so that each case has to be treated separately. On the other hand,
substochastic semigroups yield to a complete well-posedness theory.

A slightly different variant of honesty for boundary operators is discussed
in Subsection 10.5.4.

Remark 6.6. In this chapter we are often faced with the situation when we
have a subspace Z C X such that Z = RX, where R is a positive linear
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operator defined on X (typically Z will be the domain of an operator and R
will be the resolvent of this operator). In such a case, in general, Z, # RX
(e.g., for R = L, its inverse Al — T may be not a positive operator) and
u € Z does not yield uy € Z, (that is, Z, is not a generating cone for
7). However, we can still represent v as a difference of two elements of Z,
using the following argument. Let, for a given u € Z, w = Rf, f € X. Then
f=f+—f= f+, f- € X; and we define

iy = Rfr € Z4, (6.10)

because R is a positive operator. Clearly, @y — a— = wu. Notation (6.10) is
used throughout the book to denote this decomposition of an element of Z
into a difference of elements from RX | C Z;.

Let us suppose that some linear relation is defined on Z. Using (6.10), we
see that it holds for any u € Z, if and only if it holds for any « € RZ, and
if and only if it holds for any u € Z. In particular, (6.7) is equivalent to

/(T+ B)udp = —c(u), u e D(T). (6.11)
o

The next lemma gives a reformulation of (6.11) in terms of the norm in the
underlying space. For A > 0 we define Ly = R(\,T) = (\[ —T)~ 1.

Lemma 6.7. If assumptions 1 and 2 are satisfied, then condition (6.7) (and
therefore (6.11)) is equivalent to

—c(Lxf) = MLAfIl + IBLAfI = I £1]5 feXy. (6.12)

Proof. First, we note that because L) is a surjection from X onto D(T) we
have, for any f = (A — T)u, u € D(T),

/(Tu—i—Bu—i—)\u—)\u)du:—/fdu+/BL>\fdu+/\/L,\fd/,L.
Q Q Q

By Remark 6.6, Eq. (6.7) is equivalent to Eq. (6.11), so that

—c(u):—/fdu—F/BLAfdu—k)\/L,\fd,u. (6.13)
0 Q Q
In particular, this is valid for f € X and, because LyXy C D(T)4 and B is
a positive operator, we have
—c(Laf) = MLAfIT+IBLAfI = IF, - f e Xy (6.14)

Conversely, let (6.14) be valid for any f € X . Writing it in the form (6.13),
we obtain its validity for any v € L)X and then, by Remark 6.6, for arbitrary
we D(T). O
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In the next theorem we use the ‘telescoping’ property of the series (6.6),
already applied in [15, 87] in the conservative situation, to prove the corre-
sponding results in a strictly substochastic context.

Theorem 6.8. For any fited A\ > 0, there is 0 < 8\ € X* with ||Bx] <1 such
that for any f € X4,

MEBOX K)f = [fll= <Ba, f> —c (RN, K) f).. (6.15)

In particular, ¢ extends to a nonnegative continuous linear functional on

D(K), given again by (6.8).

Proof. Let us fix f € X,. From (6.6) and nonnegativity we obtain

N
ML= )7 fl) = Jim 3 ALy(BLy)" |

By (6.14) we get

S ALABL ] = 3= (I(BL)" 71 = [(BL)™ ] = (La(BLA)" )

n=0

N
=151 = B 5 = e ( £ IaBLS ). (616)
n—=
The left-hand side is nonnegative and ¢ is a nonnegative functional, therefore
we obtain N
0< e E BT <1l (6.17)
n=0
and because the series is nondecreasing, the numerical sequence is converging.
However, because c is an integral functional with a nonnegative kernel, from
the monotone convergence theorem we obtain

lim ¢ (JXV: L)\(BL)\)nf> =c <§: L,\(BL)\)nf) = C(R(/\, K)f) < +o00.
o0 n=0 n=0
Thus, for f € X4, we have ¢(R(\, K)f) < |Ifll- If v € D(K), then u =
ROVK)f, f € X, fr+f- = |f] and 1] = | f]l, so that using (6.10) we
have

le(w)] < e(ty) + () < If 1+ I1F=11 = 1F]-

This shows that ¢ is finite on D(K) and continuous in the graph topology
because
()] < [fIl = [[(A = K)ul] < Aul] + [[Kull.

Returning to (6.16) we see also that ||(BLy)N*!f|| converges to some 3y (f) >
0 and, by a similar argument, ) extends to a continuous linear functional on
X with the norm not exceeding 1. O
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Proposition 6.9. (G (t))i>0 is honest if and only if for any f € Xy and

t>0,
t

1Gx () f] = 1] — ¢ / Gr(s)fds | . (6.18)

0
Proof. Let v € D(K)4. Integrating (6.9) we obtain

t t

1Gx (Byul) = [lul] - / ¢(Gre(s)u) ds = [lul] ¢ / Gr(syuds |, (6.19)

0 0

where we changed the order of integration using Fubini’s theorem. Now, tak-
ing f € X4, we can approximate it by the sequence u, = n Ol/nGK(s)fds7
D(K)+ > u, — f in X; see (3.7). Fixing ¢t > 0, we see that because
KfOtGK(s)unds = Gg(t)u, — up, the integral ngK(s)unds converges in
D(K) to fOtGK (s)fds. Because ¢ is continuous on D(K), we can extend (6.19)
to X ;. Conversely, if (6.18) is satisfied, then it is satisfied for f € D(K).. For
such f the function t — G (t) f is continuous in D(K) and so t — ¢(Gk(t)f)
is continuous. Consequently, both |Gk () f|| and fg c¢(Gk(s)f)ds are differ-
entiable, giving (6.9). O

Let us introduce the defect function
t
n0(0) = Gk @11 = 171+ [ e(Gx(s)r)ds (6.20)
0

for fe Xy and t > 0.

Proposition 6.10. For any f € X, ny is a nonpositive and nonincreasing
function fort > 0.

Proof. By Theorem 5.2, (Gk(t))i>0 can be obtained by a monotonic strong
limit of semigroups (G,(t))i>0 generated by (I' + rB,D(T)) as r T 1. For
u € D(T')+ we have

/(T+TB)udu = /(T—i—B)ud,u—i— (r— 1)/Budﬂ < —c(u), (6.21)
o 2 7

as B is positive on D(T') and r < 1. Because for f € X, we have fOtG,‘(s)f €
D(T)4, and by direct integration over {2 of the equation

G.(t)f=f+ (T—l—TB)/Gr(s)fds,
0



6.2 Strictly Substochastic Semigroups 165

we obtain

IGo(f] < 1] — e ( / Gr(S)de) . (6.22)
0

Using the fact that the convergence of (Gr(t)):>0 is monotonic and c¢ is a
positive integral functional, we may pass to the limit in (6.22) getting

Gt F] < 1] — / Grl(s)fds | | (6.23)
0

for any f € X, and ¢t > 0 so that 7 is nonpositive.
Next, for a given f € X, we have, as above,

1G] =11 + / (K / GK<s>fds) . (6.24)

2 0

Subtracting this from (6.23) we obtain

/ (K 0/ Gre(s) fds) du+ ( O/ Cre(s) fds) <o, (6.25)

i)

valid for any ¢ > 0 and any f € X4. In particular, taking ¢ > ¢; > 0 and
f = Gk(t1)g for some g € X, we obtain

t t+i1

/GK(s)fds:O/GK(s+t1)gds: /GK(T)ng

0 t1

which gives a more general version of (6.25),

/ (K/tZGK(S)de) du+ ¢ (7GK(s)fds) <0, (6.26)

I7; i
for any 0 < t; <ty and f € X . Thus, by (6.24) and (6.26),

to

/ GK(s>fds>

t1

:/ (K]QGK(s)fds) dp+ c (7GK(8)fd8) <0,

(% t1 t1

nf(t2) = np(tr) = |Gk () fIl = IGx ()] + ¢ (

which ends the proof. 0O
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Theorem 6.11. (Gk(t))i>0 is honest if and only if B = 0 for any (some)
A>0.

Proof. Consider the function 5, given by (6.20). Because Kﬂw Gk (s)fds =
Gk (t2)f — Gk (t1)f, the function t — fo Gk (8)fds is continuous in the norm

D(K)andsot — fo ¢(Gk(s)f)ds is continuous by Theorem 6.8. Thus, taking
the Laplace transform of 1y, we obtain

[ nsterde = |ROGK)S] = S0 + 5o (ROK)) = =5 <5, f>.
0

If the semigroup is honest, then ||[R(\, K)f|| = AL (||f]| — ¢ (R(\, K)f)),
hence

<Bx, [>= —/\/ t)dt = 0

on X, and, because it is positive, it vamshes identically for all f and A > 0.
Next, if for some Ag > 0 there is f € X such that <3, f># 0, then splitting
f = f+ — f— we have <B,, f+>#<0\,, f-> and at least one of these two is
strictly positive. Thus we can assume that <f,, f>> 0 for some f € X,.
By the uniqueness of the Laplace transform, we see that 77y does not vanish
identically and hence (Gk(t))i>0 is dishonest. O

Corollary 6.12. If (GK( ))t>0 is dishonest, then there is f € Xy such that
G @F < Il = 5 e f)ds for any t > 0.

Proof. From the definition and Proposition 6.10, there is f € X, and ¢ty > 0
such that |Gx (@) fll < |If]l — fot ¢ (Gk(s)f) ds for all t > to. Put ¢’ = inf{t >
0; n7(t) < 0}. By continuity and Proposition 6.10, n(t) = 0 for ¢ € [0,¢'].
Define f = Gk (') f; then for any ¢ > 0 we have

t+t’

1GK W1 = 1Gk(E+ ) FI < | F]| - ¢ / G (s) fs
0

t4t’

"
= |G ) fll +¢ Gk(s)fds | —c Gk(s)fds
/ /
t+t

— £l e /GK )fds | = 1] - e /GK )G () Fds

— I - / Grc(s)fds
0
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Theorem 6.13. The semigroup (G (t))i>o0 is honest if and only if K =
T+ B.

Proof. First let K =T + B. If K =T + B with D(K) = D(T) then, because
/Ku dp = —c(u), u€ D(K)y, (6.27)
2

the statement follows by integrating Eq. (6.5).
Now let T+ B # K =T + B. By (6.11) we have

/Ku dp = /(T + B)udp = —c(u) (6.28)
o Q

for u € D(T). Taking, for an arbitrary u € D(K), a sequence (u, )nen C D(T)
converging to u in D(K), we obtain that (6.28) is valid for u as ¢ is continuous
on D(K) by Theorem 6.8. Thus, as before, honesty is obtained by integration
of Eq. (6.5).
Conversely, if (G (t))i>o is honest, then §y = 0 for any A > 0, which
means, by the proof of Theorem 6.8, that
lim (BL))"f=0 (6.29)

for any f € X and A > 0. Hence, the thesis follows from Proposition 4.7. O

Corollary 6.14. The semigroup (Gx(t))e>0 is honest if and only if for any
u € D(K)4 we have

/Ku dp > —c(u). (6.30)
2

The statement also holds true if we replace D(K); by R(A, K)X,4 for
some/any X > 0.

Proof. If (Gk(t))i>0 is honest, then by Theorem 6.13, K = T + B and, as
in the first part of the proof of Theorem 6.13, we obtain (6.30) with the
equality sign. Conversely, if (6.30) holds for any v € D(K), then it holds for
u=R\NK)f, f € X+. Because Ku = —(Au— Ku)+Au=—f+ AR\ K)f,
we obtain from (6.15),

[ Kudi= =11+ MBS = —clw)= <6, f>, (631)
(9]

and if (6.30) holds, then <y, f>< 0 for all f € X, thus 8, = 0 and by
Theorem 6.11 (Gk (t));>0 is honest. The last statement follows from Remark
6.6. O
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By Theorem 6.13 we can use Theorem 4.3 to provide another characteri-
sation of the honesty of (Gx (¢))¢>o0.

Corollary 6.15. (Gk(t))i>0 is honest if and only if 1 ¢ o,((BLx)").

Proof. By [75], p. 581, 0,(BL)) & 0,((BL\)*) & 0,(BLx) U o,(BLy) so
if 1 ¢ o,((BL)*), then we immediately see that 1 ¢ o.(BLy), thus, by
Theorem 4.3(a), 1 € p(BLy) U o.(BLy), giving the honesty of (Gx(t))i>o-
Conversely, if (Gk(t))i>o is honest, then by Theorem 4.3(b) and (c) we see
that 1 € p(BLx) U o.(BLy). This implies that 1 does not belong either to
op(BLy) or to 0,(BLy) and thus 1 ¢ ¢,((BLy)*). O

By Theorem 6.11, (Gk(t))¢>0 is dishonest if and only if the nonnegative
linear functional (), defined in Theorem 6.8 by

<Br f>= lm [(BROT)SI, [ X, (6:32)
is nontrivial. Because clearly
<Bx, BRA\,T)f>= lim [(BRO\T))" ' f|| =<Bx. >, [e€ Xy
we immediately obtain that
(BR(A,T))"Br = Ba (6.33)

which gives a more constructive flavour to Corollary 6.15.

Remark 6.16. It is worthwhile to reflect on the nature of dishonesty. By defini-
tion, (G (t))>0 is dishonest if it is not honest and therefore for (G g (t))¢>0 to
be dishonest, it is enough that (6.18) does not hold for just one f € X at one
moment of time ¢ > 0. Hence it makes sense to consider ‘pointwise in space’
honesty and say that (Gg(t))i>0 is honest along the trajectory {G (t) f}i>o0
if (6.18) holds for this particular f and for all ¢ > 0. Accordingly, such a tra-
jectory is called an honest trajectory. Thus (G (t))i>o is honest if and only
if each trajectory {Gk (t)f}+>0 is honest. Moreover, honesty can also be con-
sidered to be a ‘pointwise in time’ phenomenon. Indeed, if u(ty) € D(T + B)
for some tg > 0 then, by (6.3),

d

] ==t
and therefore we can say that the trajectory {Gg(t)f}i>0 is honest over a
time interval I if and only if Gg(t)f € D(T + B) for t € I. In other words,
(Gk(t))e>0 is dishonest along the whole trajectory {Gk (t)f}:>0 if and only
if this trajectory, starting from f € D(T + B), leaves D(T + B) immediately
and stays in D(K) \ D(T + B) for all ¢ > 0.

In general, our theory cannot determine, in general, whether a given system

(Gk(t))i>0 can be dishonest along some trajectories and honest along the
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others. Using specific properties of birth-and-death and fragmentation models,
however, we can show that dishonesty in these models is spatially universal.
That is, if it occurs along one trajectory, it must occur along any other; see
Theorem 7.14 and Theorem 9.21.

Unfortunately, much less can be said about how dishonest trajectories
behave in time. One of the reasons for this is that our theory is based on
the Laplace transform approach which gives, in some sense, time averages of
solutions which provide little information about the properties which are local
in time.

6.3 Extension Techniques

The problem with most of the characterisation results given above, such as
Corollary 6.14, is that they require knowledge of the generator itself. One
way of circumventing this difficulty is to express everything in terms of the
operators B and R(A,T), that are known, and use, for example, Theorem 4.3.
Another way, which we present in this section, is to work with some extensions
of the operators that appear in the model.

Let us recall that X = L;(£2,du) where (£2, ) is a measure space. Let
E := Lo(f2,du) denote the set of py-measurable functions that are defined on
{2 and take values in the extended set of real numbers, and by Ef the subspace
of E consisting of functions that are finite almost everywhere. E is a lattice
with respect to the usual relation: ‘< almost everywhere’, X C Ey C E with
X and E¢ being sublattices of E.

In what follows by 7', B, K, and £, we denote extensions of the operators
T, B, K, and R(\, T), respectively. We abbreviate £; by £. At this moment
we only require that all extensions have domains and ranges in Ef, B, £, and
L, are positive operators on their domains, and X C 7 + B.

It is not easy to give examples of such extensions in a general setting; a
manageable example was introduced in [15]. On the other hand, they come in
a natural way in concrete problems, as we show later. Here we briefly recall
the construction of [15].

Let F C E be defined by the condition: f € F if and only if for any
nonnegative and nondecreasing sequence (f,)nen satisfying sup, ey frn = | f|
we have sup,,cy(I —T) ' f,, € X. Before proceeding any further we adopt the
following assumptions on (B, D(B)),

feD(B)if andonly if fi, f- € D(B) (6.34)

and, for any two nondecreasing sequences (fp)nen, (gn)nen Of elements of
D(B)-H
sup f, =supg, implies sup Bf, = sup Bg,. (6.35)
neN neN neN neN
Through B we construct another subset of E, say G, defined as the set of
all functions f € X such that for any nonnegative, nondecreasing sequence
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(fn)nen of elements of D(B) such that sup,,cy fn = | f|, we have sup,, ey B fn <
~+o0 almost everywhere. It is easy to check that D(T) CGC X CF CE.
Some important properties of the set F are given in the following lemma.

Lemma 6.17. Under the notation and assumptions of this section:

(o) If f €FL and 0 < g < f, then g € Fy;

(b) F C Ey; that is, any function from F is finite almost everywhere;

(c) If f € Fy and (fn)nen and (gn)nen are nondecreasing sequences of ele-
ments of X1 satisfying f = sup, ey fn = SUP, N Gn, then

sup R(1,T) f = sup R(1, T)gy.
neN neN

Proof. All three points are based on the distributive property of sup and inf
(see Proposition 2.47): for any (f,)nen and g in E,

sup inf{ f,, g} = inf{sup fn, g} (6.36)
neN neN

(a) If (fn)nen is a nondecreasing sequence in X with sup, oy fn = f, then
clearly g, = inf{ f,, g} defines a nondecreasing sequence satisfying 0 < g,, < g
with sup,,cy gn = ¢ by (6.36). This shows that

0 <supR(1,T)g, <sup R(1,T)f»
neN neN

so that sup, oy R(1,T)g, € X and thus g € F .

(b) It is enough to consider nonnegative functions. For such f, let U} =
{z € 2; f(x) = oo}. Suppose that there exists f € F with u(U}) > 0.
Then there exists Uy C U} satisfying 0 < u(Uy) < oo. Consider the
characteristic function xy, of the set Uy. Clearly, 0 # xy, € X so that
g = R(1,T)xu, € D(T). Because nxy, < f, sup,eynxv, € Fy by (a) and
thus sup,,cy R(1, T)nxy, = 0o-g € X. Thus cog must be finite almost every-
where, which implies ¢ = 0 almost everywhere and this yields, by injectivity
of R(1,T), xu; =0, contrary to the assumption 0 < pu(Uy).

(c) Because we have X 3 g, < f for any fixed n, we see by (6.36) that
hy = inf{gn, fr} converges monotonically to g, as k — oo. Therefore

R(1,T)gy, = sup R(1,T)hy, < sup R(1,T) f
keN keN

so that

sup R(1,T)g, < sup R(1,T)f.
neN keN

Changing the roles of f and g we obtain equality which ends the proof. O

By Lemma 6.17 (¢) and the assumptions on B we can define mappings:
B:D(B)y — Ef 4, where D(B) =G, and L: F; — X by
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Bf :=sup Bfy, f € DB, (6.37)
neN

Lf :=sup R(1,T) fn, fefy, (6.38)
neN

where 0 < f,, < fn4a for any n € N, and sup,,cy frn = f. These mappings can
be extended to positive linear operators on the whole D(B) and L, respectively,
Theorem 2.64.

To proceed, we put L in the framework of the Sobolev towers described in
Subsection 3.1.5. Thus, let X_1 be the completion of X with respect to the
norm

[fll-1 = IR, T) fllo = [|IR(1, T) f]].

The semigroup (Gr(t))i>0 extends by density to the semigroup (Gr,—1(t))i>0
in X_4, which is generated by the closure of 7" in X_;. This closure, denoted
by T_1, is defined on the domain D(T_;) = X C X_;. The resolvent extends
then by density to the resolvent of T, that is a bounded, one-to-one operator
R(1,T_1) : X1 — X_; with the range exactly equal to X. We have the
following lemma.

Lemma 6.18. The operator L is a restriction of R(1,T-1). As a consequence,
L is one-to-one.

Proof. Let g € X satisfy g = Lf. This means that g = sup, oy R(1,7T) fn
for a nondecreasing sequence of functions f, € X such that sup, ¢y frn = f.
Because R(1,T) > 0, the sequence (R(1,T')f, )nen is also nondecreasing and
g > R(1,T)f, for any n € N. Because g is integrable, we obtain

n—oo

2 2

lim [ ROLT) fudp = / gd

and

lim [ |¢g— R(1,T)f.|du= /gdﬂ — lim /R(l,T)fndu =0.
2 2

2

This shows that (R(1,7T)f, )nen converges in X and therefore ¢ = Lf =
R(1,T_1)f. The extension for arbitrary f is done by linearity. O

Ezxample 6.19. If Tf = —mf, where m is a nonnegative, measurable, and
almost everywhere finite function, then

F=X 1={fcE (1+m)'feX}, (6.39)

and Lf = (1 +m)~!f. In fact, because R(1,T)f = (1 +m)~1f, then by the
definition of F, f € F provided sup,,cy(1+m)~! f,, € X for any nondecreasing
sequence of nonnegative functions f,, such that sup, cy fn = |f]-



172 6 Substochastic Semigroups and Generator Characterization

L is one-to-one, therefore we can define the operator T with D(T) = LF C
X by
Tu=u—L 1, (6.40)

so that T is an extension of T'. The relation between L and the Sobolev tower
extension of R(1,T) easily yields the result that

Lf e D(T) if andonlyif fe X. (6.41)
Moreover, clearly Lf = R(1,T)f whenever f € X. This immediately gives
Tue X if and only if w € D(T). (6.42)

In fact, as w € D(T) C X, Tu € X if and only if L~'u € X which by (6.41),
can happen if and only if w € D(T'), as L is one-to-one.
Similarly, we find that for f € D(B) we have

Bf = Bf. (6.43)

From the assumption on B, if f € D(B), then fi and f_ are both in D(B)4
and we can choose the defining sequences f/, = f; and f// = f_ for any n € N
so that

Bf = Bf_ —Bfs =sup Bf, — sup Bf = Bf. — Bf_ = Bf.
neN neN

The central theorem of this section reads:

Theorem 6.20. If (T, D(T)) and (B,D(B)) are operators in X such that
(T,D(T)) generates a substochastic semigroup (Gr(t))i>0 on X, D(B) D
D(T), Bu > 0 for uw € D(B)4, assumptions (6.34) and (6.35) are satisfied
and

/(Tu + Bu)dp <0, (6.44)
Q

for all w € D(T)4, then the extension K of A + B, that generates a sub-
stochastic semigroup on X by Corollary 5.17, is given by

Ku = Tu+ Bu, (6.45)
with

D(K)={ue D(T)ND(B) : Tu+Bu € X, and ngr_irrlooH(LB)"uH =0}. (6.46)

Proof. Let us assume that v € D(K). Then we have

f=(I-KueX, (6.47)



6.3 Extension Techniques 173

and so Lf = (I — T)"'f € D(T) € D(B) which implies, by (6.43), that
BLf = BLf. Consequently, from (6.6) we obtain

oo}

u= S L(BL)*f. (6.48)

k=0
For any given f € X and arbitrary n € N we define
k=0
and
Uup = Lgp. (6.50)

By (6.6), (un)nen converges to u in X. (Note that in general u ¢ D(T).)
However, for positive f we can consider limits of both sequences (u,)nen and
(gn)nen in the sense of monotonic convergence almost everywhere, as L and
B are positive operators. We have u = sup,,cy un € X4 by closedness of the
positive cone, Proposition 2.73. Denoting the limit of (g,)nen by g, we see
that X 3 v = sup, ¢y Un = Sup, ey Lgn € X4 so that

Lg = u,
thus g € F4 and consequently v € D(T) with
Tu=u—-L"'u=u—-L"'Lg=u—g. (6.51)
Because gy, € X for any n, by (6.41) we obtain u,, € D(T);+ C D(B)+ so that
by (6.43),

n

Bu, = BLg, = (BL)k_Hf =gn+1— [
k=0

Because sup,,cy gn = g € F4 with g being finite almost everywhere, by Lemma
6.17, and because f € X is also finite almost everywhere, we have

sup Bu, = g— f < 400
neN

almost everywhere. Thus, u = sup,,cy un € D(B)4 and
Bu=g-f. (6.52)
This shows that w € D(T) N D(B) and, by (6.47), (6.51), and (6.52),
Ku=u—f=g+Tu—g+Bu=Tu+ Bu.

Because f € X and g € F, by (6.52) we have Bu € F (in fact, in Fy as u is
positive) and therefore we can operate with L on both sides of (6.52), getting

LBu=u—Lf
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by (6.51). Thus, we see that because v € D(B) by (6.52) and Lf € D(T) (as
f € X), the left-hand side is in D(B) and we can calculate

BLBu=Bu—BLf=g— f—BLf =g g1.
Now, because Lf € D(T') € D(B), BLf = BLf € X C F and we find
(LB)2u:u— Lf —LBLf = u — u,

and again, by BLf € X, we have LBLf € D(T), so that each term on the
right-hand side is in D(B). We now make the assumption: for some n

B(LB)"u=9g—g, €F (6.53)
and
(LB)""'u=u—u, € X. (6.54)

In the latter, as before, u € D(B) and u,, € D(T) C D(B), so that operating
with B we get by (6.52), (6.49), and (6.50),

B(LB)""'u=Bu—Bu, =g~ f~ > (BU"'f=g— g
k=0

and, as above, ¢ € F; and g,+1 € X, so that the left-hand side is in F.
Operating with L, we obtain by (6.51) and (6.50),

(LB)"™u =Lg — Lgn+1 = u — tn41,

where u € D(B) and u, 41 € D(T). Thus, (6.53) and (6.54) are proved for any
n € N. Moreover, as lim,,_, { o u, = u in X, we see that
lir+n [[(LB)™u|| = 0. (6.55)
We recall that all these calculations were carried out under the assumption
g > 0, that is, for v € R(1,T)X;. However, splitting v = 4y — u_ as in
Remark 6.6, we obtain that the statement is valid for any v € D(K).
Conversely, suppose that u € D(T)ND(B), Tu+Bu € X, and (6.55) holds.

Define f = u — Tu — Bu € X and note that u — Tu € F so that Bu € F and
therefore by, (6.40),

R, T f =L(u—Tu—Bu) =L(u—Tu) — LBu
L(u —u+ L™ u) — LBu = u — LBu.

Because v € D(B) by assumption, and R(1,T)f € D(T) C D(B), we have
LBu € D(B) and hence

BR(1,T)f = Bu — BLBu.
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As we observed before, Bu € F, so that BLBu € F as well, because BR(1,T)f €
X C F. Thus, we can operate with L, getting

R(1,T)BR(1,T)f = LBu — (LB)?u,

where, as before, LBu € D(B), R(1,T)BR(1,T)f € D(T) C D(B), hence
(LB)2u € D(B). Thus, we can adopt the induction assumptions: (LB)¥u €
D(B) for k < n,

R(1,T)(BR(1,T))"*f = (LB)" u — (LB)"u, (6.56)
and B(LB)*u € F for k < n — 1 with
(BR(1,T))""*f = B(LB)"?u — B(LB)" .
Applying B to (6.56) we obtain
(BR(1,T))"f = B(LB)""'u — B(LB)"u,

where, by assumption, B(LB)"!u € F and because (BR(1,T))"f € X C F,
we obtain that B(LB)"u € F. Next, applying L to the last equation, we obtain

R(1,T)(BR(1,T))"f = (LB)"u — (LB)" ",

where, by the same argument as before, we show that (LB)"*1u € D(B).
Now, using (6.56) we easily find
S R(L,T)BR(1,T))"f =u— (LB)""u;
k=0
thus, by assumption
> R(LT)BR(LT)"f =u
k=0
and u = R(1,K)f € D(K) by (6.6). O
Remark 6.21. The construction (6.48)—(6.50) used in the proof allows a certain
refinement of the decomposition introduced in Remark 6.6. In fact, here any
u € D(K) can be written as

u:ﬂ+7ﬂ_,

where D(K) 3 g = R(1, K)g+, g+ € X and there exist elements fr €Fy
such that 44+ = Lfy. This decomposition is often used in the sequel.

Now we are ready to present a general theorem giving sufficient conditions for
the honesty of (Gx(t))i>o.
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Theorem 6.22. If for any g € F such that —g+BlLg € X, and ¢(Lg) exists,

/ Lgdu + / (—g +BLg) du> —c(Lg), (6.57)
0 N

then K =T + B.

Proof. Our aim is to prove that (6.30) holds for all v € R(1, K)X,. Thus,
let u= (I —K)"'f, f € Xy, and let g be the monotonic limit of g,, de-
fined by (6.49). Because Ku = u — f, where u = Lg and Bu,, = Blg, =
Yh_o(BLETf = —f + g, 11, we have Bu = g — f and we can write

Ku=Lg— g+ BlLg. (6.58)

For such g, Lg = v € D(K) is integrable and thus —g+ BLg is also integrable.
Moreover, ¢(Lg) = ¢(u) exists by Theorem 6.8. Thus, if (6.57) holds for any g
satisfying the assumption of the theorem, then it holds for all functions g that
satisfy u = Lg and by (6.58) we obtain that (6.30) is valid for v € R(1, K)X
which, by Corollary 6.14, gives K =T+ B. O

Next we prove a theorem giving a sufficient condition for (Gg(t))i>0 to
be dishonest. The idea is to find a nonnegative element u € D(K) for which

/Ku dp < —c(u), (6.59)
2

which is equivalent to the dishonesty of (G (t)):>0 by Corollary 6.14. How-
ever, as before, we do not know K so we work with the extensions of the
involved operators introduced at the beginning of this section.

Theorem 6.23. If there exists uw € D(K)y N X such that for some X\ > 0

(i) [LA(M — T)u)(z) = u(x), a.e.,
(i) Au(x) — [Ku](z) = g(z) >0, a.e.,
(iii) c(u) is finite and

/ICu dp < —c(u), (6.60)
Q

then the semigroup (Gk (t))i>0 s not honest.

Proof. We prove that there exists a nonnegative u, € D(K) satisfying (6.59).
From (ii) we have

Au(z) — [Tul(x) - [Bul(z) = g(),

where, by the definitions of the operators and the domains, each term is a
measurable function that is finite almost everywhere and g € X ;. By (i) we
obtain
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u(z) — [LaBul(z) = [Lag](z) = [R(A, T)g)(x), (6.61)

where we used the fact that on X the operators £y and R(A,T) coincide.
From (6.61) we obtain in particular that £ Bu € X; thus we can operate
with £,B on both sides of (6.61), separate terms on the left-hand side, and,
using BR(A,T) = BR(\, T), we get

[£aBul(2) = [(LAB)*ul(x) = [R(X, T)BR(X, T)g)(x)- (6.62)

Repeating this procedure for arbitrary n and summing up the iterates we
obtain

ulx) — [(LAB)" () = 3° (RO T)(BR(A.T)) g ().

i=0
From Theorem 5.2 we obtain that the right-hand side converges in norm to a
positive element u, = (Al — K)~! € D(K). Therefore the sequence of iterates
also converges to a nonnegative element h € X, thus

u—h=\—-K) g
and, using (ii) and the fact that A\ — K|px) = M — K,
M-K)(u—h)=g— (A —-K)h =g,

and hence (AI — K)h = 0. Therefore
/Kugduz/Kudu—/lChd,u:/lCudu—)\/hd,u
Q 2 2 I7; 2
< /lCudu < —c(u) < —c(uy),
2

where we used the fact that c is a positive linear functional so that 0 < ¢(h) =
c(u —ug) = c(u) — c(ug). O
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Applications to Birth-and-death Problems

7.1 Preliminaries

Birth-and-death type problems were discussed in detail in the Introduction
and were used to illustrate various situations that can occur in the framework
of substochastic semigroup theory.

Let us briefly recall that we consider a countable system of objects labelled
by the states n € N. The state of the system is described by a vector u =
(up,u1,...,Up,...), where u, is the number of objects in the state n. Note,
that in probabilistic interpretation, u,, is the probability of finding an object
in the state n so that the coordinates of u add up to 1. Any object in the
system can change its state by some mechanism and, in the simplest case
discussed here, the only possible events are changing the state n either to
the state n + 1, or to the state n — 1. We assume that the rates of change
are given and are denoted by d, and b, for changes n — n — 1 and n —
n + 1, respectively. In general, we can also include a mechanism that changes
a number of objects at the state n by, for example, removing them from the
environment or, otherwise, introducing them. The rate of this mechanism is
denoted by ¢ = (¢, )nen-

Standard modelling procedure by balancing gain and loss of objects at
each level yields

!
Uy = —agug + diu1,

u;L = —QpUpn + dpt1Unt+1 + bp_1Un_1,
(7.1)

where ¢, = b, +d,, — a,.
The classical application of this system comes from population theory,
where it is a particular case of a Kolmogorov system; in this case u, is the
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probability that the described population consists of n individuals and its
state can change by either the death or birth of an individual thus moving the
population to the state n — 1 or n+ 1, respectively, hence the name birth-and-
death system. The classical birth-and-death system is formally conservative;
this is equivalent to a,, = d,, +b,,. However, recently a number of other impor-
tant applications have emerged. For example, [107, 155], we can consider an
ensemble of cancer cells structured by the number of copies of a drug-resistant
gene they contain. Here, the number of cells with n copies of the gene can
change due to mutations, but the cells also undergo division without changing
the number of genes in their offspring which is modelled by a nonzero vector
c. Finally, system (7.1) can be thought of as a simplified kinetic system con-
sisting of particles labelled by internal energy n and interacting inelastically
with the surrounding matter where in each interaction they can either gain
or lose a unit (quantum) of energy. Some particles can decay without a trace
or be removed from the system leading again to a nonzero c.

The most common setting for birth-and-death problems is the space [;.
Here we extend it to other [, spaces to demonstrate the applicability of The-
orem 5.2. The existence results of this section for p > 1 can also be proved
using Proposition 5.5; see [45].

7.2 Existence Results

Let us recall that the boldface letters denote sequences, for example, u =
(ug,u1,...). We assume that the sequences d, b, and a are nonnegative with
b_1=dp.

By K we denote the matrix of coefficients of the right-hand side of (7.1)
and, without causing any misunderstanding, the formal operator in the space
[ of all sequences, acting as (Ku),, = bp—1un—1 — apty + dpy1Uni1. In the
same way, we define A and B as (Au), = —anu, and (Bu), = by—1un—1 +
dp+1Un+1, respectively. By K, we denote the maximal realization of K in [,,
p € [1,00); that is,

Kpu = Ku

on

D(Kp) ={uely,; Kuel,}. (7.2)
Lemma 7.1. The mazimal operator IC,, is closed for any p € [1,00).

Proof. Let u™ — u and K,u™ — v in [, as n — oo. From this it follows

that for any k, uén) — uy and, from the definition of ), vi, = bp—1ur—1 +

arug + dpy1ugyr; that is, Kyu=v. O

Next, define the operator A, by restricting A to

D(A,)={uely; Aucl,} ={uecly,; > al|u,|’ < +oo}.
n=0
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Lemma 7.2. (4,,D(A,)) generates a semigroup of contractions in .

Proof. A, is densely defined with the resolvent R(X, A,) for A > 0 given by

Yn
X, A)Y)n =
(R( 9 ;D)Y) )\+an
(recall a,, > 0). Thus,
||ApR()\»Ap)Y||Z = Z ﬁ|yn|p Z |y
n=0
and
d 1
RN, Ap)yll; = ;) m|yn| < ||Y||p,

so the lemma follows by the Hille-Yosida theorem. 0O

Theorem 7.3. Assume that sequences b and d are nondecreasing and there
is a € [0,1] such that for all n,

0<b, <aay,, 0 <dpt1 < (1—a)ay,. (7.3)

Then there is an extension K, of the operator (A, + B,,D(A,)), where

B, = B\D(Ap), which generates a positive semigroup of contractions in I,
€ (1,00).

Proof. The operator B, is clearly positive; we must show that it maps D(A,)
into [,. For x € D(A,) we have by b_; =dy =0,

o 1/
1Bl = (3 [bacsznos + dusrzasa]”)
n=0
oo 1/ oo 1/
= (szfl‘xn*ﬂp) p+ (dez+1’$n+1|p) ’
n=0 n=0
= (X tleal) " (X ) ”
n=0 n=0
By monotonicity of d we have d,, < d,,4+1 so that by (7.3) we obtain

> 1/p
1Byxlp < (- atlwal) " = 1 4,xp:
n=0

Thus, B,D(A,) C l,. Moreover, because —A,, is a positive operator, by Re-
mark 5.3, we see that assumptions (A2)—(A3) of Theorem 5.2 are satisfied.
To prove (A4) we take x € D(A,)+ and the corresponding element X =

(in)nEN s
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P 0 if ,, =0,
" 2kt if a, #0.

Then x € l;, where 1/p + 1/¢ = 1. For simplicity we assume z,, # 0 for any
n € N. From (7.3) we have a,, > (b, + dp+1), so that

oo
<K,px, x>= Z(pr)nxffl

n=0

oo oo oo
—1 —1
=- E anx? + E bp—1Zp—_128 " + E dpt1Tn412h
n=0 n=0 n=0

0o 00 00 )
§ : § : § : -1 § : -1
< - bnxﬁ - dn+1$£ + bnflxnflxﬁ + dn+1xn+1x£ )
n=0 n=0 n=0 n=0

where the calculations above are justified by the convergence of all series (see,
e.g., [45]). Thus, by the Holder inequality we obtain

> 1/p s & /¢ &
<kpx, %> < (Yo baat) (Y baalin) =Y baal
n=0 n=0 n=0
> 1/p f & /g &
(D duat) (Y duraat) =Y e,
n=0 n=0 n=0

and, using b, < b,41 and d,, < dpy1, we obtain <Kpx,x><0. O

Corollary 7.4. Let p € (1,00). Then K, = A, + B,.

Proof. Asin Lemma 7.1, we can prove that B is closed and thus B, is closable.
Hence the statement follows from Theorem 4.12. Alternatively, the statement
follows directly from Remark 5.6. O

Corollary 7.5. Let p = 1. Assume that sequences b and d are nonnegative
and

an > (b + dy). (7.4)
Then there is an extension Ky of the operator (A1 + B1, D(A1)), where By =
B|p(a,), which generates a positive semigroup of contractions in ly.

Proof. We have
D(Ay) ={uely; > anlun| < 400}

n=0
and, from (7.4), 0 < b, < a, and 0 < d,, < a, for n € N. Hence, A; is well
defined and condition (6.4) takes the form

[ee] [ee] oo oo
Y (A1 + Biu)y = =3 antin + 3 bn1tn—1+ D dny1Unir
n=0 n=0 n=0 n=0

00 00 )
:_Zanun+ anun+ Zdnungoa

n=0 n=0 n=0

where we used the convention b_; = dy =0. O
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Remark 7.6. There is a difference in conditions ensuring dissipativity in {,, for
p > 1 and in [y. In the first case we require a,, > (b, +d,+1), and in the second
an, > (bn+d,,). Because (d,, )nen is assumed to be increasing, the condition for
p > 1 is stronger. However, if for p > 1 the coefficient a,, satisfies the condition
for {1, we can redefine a,, = a,, — d,, + dp41 so that @, satisfies the proper [,-
condition. Now, if —d,,+1+d, is bounded (e.g., for affine coefficients), then the
existence of the semigroup with the original coefficients can be established by
the Bounded Perturbation Theorem. The resulting semigroup, however, may
be not contractive.

Theorem 7.7. For any p € [1,00) we have K, C Kp,.

Proof. First we note that if u” — u as r — 1 in [, then for any n,

lirri((f — ]Cp)ur)n = li%(u; + apu, —by_qu;, _q — dn+1u2+1)

= Up + apUy — bnflunfl - dn+lun+1

= (I = Kp)u)n. (7.5)

Denote u" = R(1,A + rB)f for f € [,. We know that u" — R(1,K,)f as
r — 1. Because R(1, A+ rB) is the resolvent of (A + rB, D(A)) which is a
restriction of the maximal realization of A + r3, we have

(I =Kp)u")p = uy, + apuy,, — rbp_1uy,_y — rdpyiuy,
_(1 - T)(bn—lu;—l + dn-i-lu:z-&-l)
= fo— (1 =7)(bp-1us_1 + dn+1U;+1)-

Because n is fixed; we see that the last term tends to zero and by (7.5) we
obtain ((I — KCp)u),, = fp; that is,

(I-K,)R(1,K,)f =f.

7.3 Birth-and-death Problem — Preliminary Results

We now focus on the classical conservative birth-and-death problem in X = [y,
that is, we put a, = (b, + dy). Also, for simplicity, we drop the subscript
p (= 1) from the notation.

This problem has a long history and it appears that the term honesty was
coined by Reuter and Lederman while investigating it. We briefly summarize
their results which are relevant here.

The solvability results that appeared in [144] referred to a more general
Kolmogorov equation; that is, in the system (7.1) the right-hand side is the
full infinite matrix. This corresponds to the case when an individual changing
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state can move to any other state and not only to the two neighbouring ones, as
in the birth-and-death problem. The idea of the method is to approximate the
solution of (7.1) by a sequence of solutions of cut-off problems of a similar form.
Here we reformulate the method of [144] for solving Kolmogorov equations,
in the language of the theory of semigroups. A more general analysis of this
problem, which also includes a spatial dependence of coefficients, can be found
in [36]. We use a version of this approach to provide an alternative proof of
solvability of a pure fragmentation equation in Subsection 8.3.2.
Thus, for a sequence u € X we introduce the projection operators

u; if0<i<n,
P"u_{Oif i>n, (7.6)

define A,, = AP, = P,A = P,AP,, B, = P,BP,, and consider the system
of ordinary differential equations in R",

u), = A,u, + Bu,. (7.7)
The operator on the right-hand side generates a uniformly continuous pos-
itive semigroup of contractions on R™, denoted by (G,(t))¢>0. The family
(Gr(t))e>0 can be extended to a uniformly continuous family of operators de-
fined on the whole of X by G, (t) = PG, (t)P,. Note that (G, (t));>0 is no
longer a semigroup.

Theorem 7.8. (a) There is a positive Cy-semigroup of contractions (G(t))i>o
such that, forug € X andt > 0,

G(t)uo = lim Gn(t)llo,
and the generator K' of (G(t))i>0 is an extension of (A + B, D(A)).
(b) If t — v(t) = (v1(t),v2(t) ...) is a sequence of functions such that for any
k, t — vg(t) is integrable on any bounded subset of Ry and satisfies, for
almost all t and any k:

t

vk (t) = ug,0 + / (br + di)vi(s) + br—1Vk—1(5) + dpr1vk41(5)) ds,

0
(7.8)
then for allt > 0 and all k € N,

ue(t) > (G(t)uo). (7.9)

(¢) For anyug € X, u(t) = G(t)ug satisfies the equation (7.8) for anyt >0
and every k.

Investigation of the conservativity of solutions was reduced, [144, The-
orems 6 and 7], and also, [59, 146], to the analysis of summability of the
expression Wy, n, = Wn,ny + Wn,n,, Where
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_ 1 dn dn"'dn0+l

Wn,ng bn + bnbn_l + + bn . bno (7 0)
_ dndno

Ty = G (7.11)

Theorem 7.9. Let us denote by uy,(t) the solution corresponding to the ini-
tial condition Wy, defined by Up n, = Opn, (Kronecker’s delta).

(a) If

D Winy = 00, (7.12)
n=ngo
then Y07 qtn.n,(t) =1 for all t > 0.
(b) If
D Wiy <00 and  dpg1Wnp, = O(1), (7.13)

n=ngo

then Y07 qtn n, (t) < 1 for some t > 0.

7.4 Birth-and-death Problem — Substochastic Semigroup
Approach

Let us now look at the birth-and-death problem from the point of view of the
theory of substochastic semigroups. Clearly, all the assumptions of Corollary
7.5 are satisfied and thus we have the existence of a positive semigroup of con-
tractions (Gk (t)):>0 which is generated by an extension K of (A+ B, D(A)).
At this moment we do not know whether this semigroup coincides with the
semigroup constructed in Theorem 7.8. Note that Proposition 5.9 cannot be
used here because in Eq. (7.7) both A and B are approximated.

Proposition 7.10. If (Gk(t))i>0 is the semigroup constructed by Kato’s
method, Theorem 5.2, and (G(t))i>0 is the semigroup constructed by the
Reuter—Lederman method, then for allu € X and allt > 0,

Gk (t)u=G(t)u. (7.14)

Proof. By Proposition 5.7 we have
Gk (t)u < G(t)u,

for u > 0. On the other hand, by Theorem 7.7, K is a restriction of the
maximal operator, so that u(t) = G (t)ug satisfies the system coordinatewise
and thus Theorem 7.8(b) shows that

Gk (t)u > G(t)u

for u > 0. Thus, G(t)u = Gk (t)u on the positive cone, and the equality can
be extended onto X. O
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We now find whether the constructed semigroup is honest (conservative)
or dishonest by means of the extension techniques of Section 6.3. In the case
of matrix operators it is particularly easy to give explicit descriptions of the
extended operators and related spaces. Let us recall that we denoted by [ the
space of all sequences. Thus [ = E; & E as, according to the definition, E
can contain sequences with an arbitrary number of infinite entries whereas Ey
cannot contain any such entries because sets of measure zero with respect to
the counting measure are empty. Thus, for example,

= (o)
S \1+0b,+d, neN

on F = {u € l; Lu € 1}, Au = ((by +dn)un),cy on D(A) = LF, and
similarly for the other operators and spaces introduced in Section 6.3. In
particular, in this setting, Theorem 7.7 follows directly from Theorem 6.20
and, in particular, from (6.45). Recall that by K we denoted the matrix of
coefficients and, at the same time, the formal operator acting on [ given by
multiplication by K. It is easy to see that the maximal operator K; (see (7.2))
is precisely

Ki=K=A+B. (7.15)

Note too that for u € D(K), the integral [, Kudyu, which plays an essential
role in a number of theorems (e.g., Theorems 6.13, 6.23, and Corollary 6.14),
is given here by

118

(f(bn + dn)un + bn—lun—l + dn+1un+1)

n=0

n

lirf > (—(bg + di)ug + bp—1up—1 + dpp1up41)

= liIJIrl (=bptn + dpr1tnt), (7.16)

n—-—+0oo

where the limit exists as u € D(K) yields the convergence of the series.
In the theorems concerning honesty and maximality we assume, to avoid
technicalities, that b, > 0 for n > 0 and d,, > 0 for n > 1.

Theorem 7.11. K = A+ B if and only if

x 1 o

dn+j
— = | =400 7.17
nZ::O bn 7,;) ]1;‘[1 b71+j ( )

(where we put H?:1 =1).

Proof. To prove honesty, we use Corollary 6.14 and Theorem 6.22. Thus, by
(7.16) it suffices to prove that for any u € D(K)

lim (—bnun + dn+1un+1) Z 07

n—-+o0o
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where we know that the sequence above converges. Then assume, to the con-
trary, that for some 0 < u € D(K), the limit in (7.16) is negative so that there
exists b > 0 such that

—bpuy, + dn+1un+1 <-b (718)

for all n > ngy with large enough ng. We can easily modify u so that all the

terms of the sequence above are less than or equal to —b. This can be done, for

example, by putting u, = b;l(b + dgy1ugs1) for 0 < k < np— 1 and leaving

ug with k > ng unchanged. Clearly such a redefined u satisfies 0 < u € D(K).
Starting from (7.18) we get for n > 0

b dnpia
un = bf + Zn Un+1
and, by induction, for arbitrary k
1 dn+1 dn+1 e dn+k dn+1 e dn+k+1
W > b "
v <b RS UL W SUEUT ST B SO ST

b [ ki dog
s 2 Gntj
by E%Jl;[lbnﬂ

Because k is arbitrary, we obtain

b [ = 1 dns
i=05 brrj
and, if the assumption (7.17) is satisfied, we obtain ) ju, = -+oo which
contradicts the assumption of the summability of (uy,)nen.

The proof of necessity is an application of Theorem 6.23. Thus, let us
assume that the series in (7.17) is convergent and rewrite it as

i

x 1 S dn+j
— — 7.19
ngObn 1;)]1;[1 bn+j ( )

1 dy dyds ) (1 di+1 dit1dig2 )
= -+ — + I T i + R DT
(bo bobi  bobibo by b1 bibipabigo

1 dy  dydy  dydsds
= —(1+
bo < by M b1ba N b1b2bs >

1b0b1'...'bl_1 dldl co I dj
L — <b1~...-bl+"') - Z_l;[b_

bOl 0; dz+1 r:l] 1

Let us construct u such that for n > 0 and some b > 0,
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—b = —byu, + dn+1un+1

so that assumption (iii) of Theorem 6.23 is satisfied by (7.16). The formula for
the solution of the nonhomogeneous difference equation (e.g., [77, Eq. (1.2.4)])

gives for n > 1,
n—1 ) n-1 ! )
Uy = H bi (uo b > dl) . (7.20)

d; =
i=0 itL 01=0 ;- 7

. . . . e l
From the assumption we have, in particular, that the series >~ [[;_; di/b;
is convergent as the internal series of a convergent double series of positive
elements. Moreover, this series converges monotonically so if we define

then the defined u,, are nonnegative and are given by the formula

b b (=i ds
w1l (an>

g it

By (7.19) and (7.17) we obtain that Y.~ ju, < oo and by construction,
Au+ Bu € [y, so that u € D(K). We must show that g = u— (Au+ Bu) > 0.
By direct calculations, we obtain gy = ug—+boug—diu1 = ug+b and for n > 0,

gn = Unp + bnun + dnun - bn—lun—l - dn+1un+1 = Unp,

so that 0 < g € I;. It is obvious that assumption (i) of Theorem 6.23 is
satisfied. O

Next we relate this result to the conditions of [144], Theorem 7.9.

Proposition 7.12. Condition (7.17) is equivalent to (7.12) for some (any)
ng > 0. Thus the sufficient condition for conservativity of the solution from
[144] is also necessary.

Proof. Let us denote the inner sum appearing in (7.17) by

00
W, = Z Qn,ry
r=0

where
bi for r =0,
n

Qp,r =

dnyi1dnyr
bbn by for r > 0.

Next, Wy, n, of (7.10) can be written as
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n—no

’wn,no = Z bn,s
s=0
with
bi fors=0
bn,s = d,;-...‘dZ,SJrl for s > O,
n---"Un—s

thus, changing the variable n according to n = s+ 1 (I is the new variable),
we obtain for s > 0

B Cdsqyceoodipr
bn,s = bl+5,s = = Qas,
bs+l )
and for s =0
b 0= 7 =ao-
mn, bl s
Therefore, for any ng
o0 oo n—no oo oo o0 oo oo oo
D Wnme = Do D bns=2. X bas= Ybuss=D > as
n=no n=ng s=0 s=0n=no+s s=01=ng s=01=ng
o0 o0 o0
=2 Yas= y W. (7.21)
l=ngo s=0 l=no

Let us fix arbitrary ng. If (7.17) is satisfied, then either >, W; = oo or, for
some 0 < k <ng—1,

[ee] di
A= ] 5 = too. (7.22)
=k kg1 "
Let m > k. Then
m-1 L 4 LIS
Ar=1+ % [[ 7 +4n 1T &
=k j—py1 7 i=k+1

so that Ay and A,, are simultaneously either convergent or divergent for
any pair k, m. Using this result together with (7.21) we see that the Reuter—
Lederman condition (7.12) is satisfied for any ny.

Conversely, if the Reuter-Lederman condition is satisfied even for some
ng, then either foznown,no = 400 or Zf=noﬁn,no = A,,, = co. This yields
(7.17). O

Remark 7.13. In [8, Chapter 3, Theorem 2.2] condition (7.17) appears in a
different context: as the necessary and sufficient condition for the minimal
solution to the backward equation to be its unique solution. The link between
this statement and the conservativity (honesty) of solutions to the forward
equation is not explicitly indicated. However, as the matrices of the coeffi-
cients of forward and backward equations are (at least formally) transpose to



190 7 Applications to Birth-and-death Problems

each other, such a link can be established on the basis of the results relat-
ing conservativity of solutions to substochastic semigroups and the structure
of the point spectrum of the adjoint problem as given in Theorem 4.3 and
Corollary 6.15.

7.4.1 Universality of Dishonesty

Let us recall that for a semigroup to be dishonest, by negating the honesty
as defined in Definition 6.4, it is sufficient that the conservation law does not
hold along a part of a single trajectory. Thus, in principle, there might be
trajectories along which the conservation law is valid; see Remark 6.16. We
conclude this section by showing that for the birth-and-death problem this
is impossible so the dishonesty of the process is universal. In other words,
if it happens at all, it must happen for all initial conditions. This could be
deduced by combining Theorem 7.9 with Proposition 7.12 but we present
another proof, based on [42], which demonstrates applicability of Theorem
4.3.

Theorem 7.14. If (Gk(t))i>0 is dishonest, that is, if

S ST1

n=0 by, z'=0j:1 bn-i-j

o

< 400, (7.23)

then for each uy € X, there is tg > 0 such that |Gk (t)ug|| < ||| for all
t > tg.

Proof. By Theorem 6.11, (G (t));>0 is dishonest if and only if the functional
B, defined in Theorem 6.8, is not identically zero. Again by Theorem 6.11,
the defect function along the trajectory originating at ug, which in our case
is given by ny, (t) = |Gk (t)ug|| — ||uol|, is related to By by

T 1
/e_ktnf(t)dt = _X <Bx, >,
0

and we see that in order for dishonesty to be universal it is necessary and
sufficient that <0y, f> # 0 for any f € X . Because here X* can be identified
with I, By = (Bn)nen with 8, > 0 and sup, ¢y Bn < 00, we see that for
universality of dishonesty we must have 3, > 0 for any n > 0.

To show this, we note that by (6.33) the functional 3, is an eigenvector
of (BR(A, A))*. As the value of A is inessential, let us put A = 1 and denote
01 = B. To find (BR(\, A))*, we note that (Bu),, = b,_1up—1+dpt1Un41 for
n >0 (remember b_; = dy = 0) and (R(1, A)u), = u, /(1 + b, + dy,) so that

dn+1 bnfl
BR(1,A)u), = Una1 + Up—1 -
(BR(L, A)w) T bpgr +dngs " Tdbpg+doq



7.5 Maximality of the Generator 191
Thus, for (¢n)nen € loo,

<¢, BR(1, A)u>

_ 1 d7l+1 bn—l
“1i0 o4 u1¢o + Z (1+bn+1 o Upy1 + 1+bn71+dn71un_1 ®n
bo dyp, bn
1+b“0¢1+z<1+d b, G 1+1+d T, ¢n+1)unv

where the change of order of summation is obvious for positive u and ¢, and
then by linearity for arbitrary ones. Thus (6.33) takes the form

bo
1 ¥ b0¢1 - ¢07
d,, bn,
m@% 1+ m¢n+l = ¢n,

A

and because by/(1+by) < 1, we have ¢ > ¢¢. Rearranging the nth equation,
we get

1+0b,+d, dn
Pnt1 = by, <¢n - an_i_dn@«b—l)

1+ bn + dn dn _ 1 dn
- T?ﬁn - aqsn—l - (1 + bn) ¢n + bn (¢n - ¢n—1)'

Thus, ¢n4+1 > ¢p, whenever ¢, > ¢,—1 and because we have ¢; > ¢g > 0,
we obtain by induction that ¢, > 0 for all n € N. Because 8 = (5, 01, . .)
must be among nonnegative solutions, we see that also §, > 0 for all n > 0
and therefore <f, f>> 0 for any 0 # f € X, . The theorem then follows from
Proposition 6.10. O

7.5 Maximality of the Generator

We begin with a simple observation that is the basis of our considerations. Let
us recall that the relation between the generator K and its extensions K and
KC is given in (7.15). In particular, the extension K is the maximal operator.

Proposition 7.15. If (Gk(t))i>0 is a substochastic semigroup generated by
K and for some 0 <h € D(K),

/ Khdp > 0, (7.24)
2
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then K # K; that is, the generator is not mazximal.
Conversely, assume that if 0 # u € | solves the formal equation

Ku=2Xu, >0, (7.25)

then either u > 0 or u <0, and

/ Khdy = 0, (7.26)
(7

foranyh € D(K). Then K = K that is, the generator is the mazimal operator.

Proof. Tt follows that if h € D(K), then [, Khdyu = 0. Because K C K, (7.24)
shows that h ¢ D(K).

If K # K, then by Lemma 3.50 we have N(AI — K), # (. Because (7.25)
is linear, then the assumption ascertains the existence of 0 £ h € N(AI —K)
and for such an h

/ Khdp = )\/hdu # 0, (7.27)
o) e)
contradicting (7.26). O

To be able to use this result, we prove the following lemma.

Lemma 7.16. Let A\ > 0 be fized. Any solution to (7.25) is either nonnegative
or monpositive.

Proof. Any solution h to (7.25) satisfies

Mo = —hobo + dihi,

Ahy = *hn(bn + dn) + dn+1hn+l + bn—lhn—lv
D (7.28)

for some A > 0. Assume that ho > 0. Because dih; = (X + bg)hg, we have
hy > 0 so that
()\ + dl)hl — bohg = )\(h1 + ho) > 0.

For arbitrary k > 1 we have from (7.28),

A
AN+ dg)hg — bp—1hg—1 = (1 + dk) (N4 br—1 + dp—1)hi—1

—br—2hg—2) — bp—1hr—1

A
> (1 + dk) (AN dp—1)hp—1 — bp—2hi—2),
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so that by induction (A + dg)hr — bg—1hr—1 > 0 for any k. Thus

br—1hr—1
> rpolite=l
= A+ dg

and hy > 0. O

Theorem 7.17. K # K if and only if

nfl i
> 1 J n— di

where, as before, H‘? =1.

J=1
Proof. By Lemma 7.16 and Proposition 7.15, K # K if and only if for each
0 § (un)nEN € lla such that (*(bn + dn)un +bn—1un—1 + dn+1un+1n)n€N S
l1, we have

o0

I= Z (*(bn + dn)un + bp—1Up—1 + dn+1un+1) > 0.
n=0

As in (7.18) we need to investigate the behaviour of the sequence (r,)nen
defined as
T = —bply + dpy1tnyt, n > 0. (7.30)

Again using the formula for solutions for the first-order difference equation,
[77, Eq. (1.2.4)], we obtain, for n > 1,

1 n=1 n—1—1 uobo n—1 bj
1 2 31
u dm;o H d 0 j};[ldj (7.31)

Factoring out g,,—1 := H;le b;/d; from (7.31), we can rewrite u,, in the form

Uy = 92—1 (ro + boug + Z Tig; ) . (7.32)

If K # K, then there is a nonnegative (uy, )nen € l1 for which I = lim,, oo 7, >
0. Thus the sequence (rn)nen is nonnegative (even strictly positive) beginning
from some nO If ny > 0, then we can modify (un)neN 50 that r, > 0 also
for 0 < n < ng — 1. Indeed, first observe that there is ng > ng with u,, > 0
(otherwise all w,, are zero starting from ng which gives r, = 0 for n Z ng)-
Taking ng = max{ny, ny }, we modify (un)nen by putting @,, = u,, and

i Ano+1—k _
0 < Upy—k < Zoikuno-ﬁ-l k
no—
for K = 0,...,n0. Denote for a moment the modified sequence (u)nen

by (@n)nen and the corresponding sequence (7.30) by (7, )nen. Because we
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have only changed a finite number of components of the sequence (up)nen,
(n)nen € l1. Furthermore, as only the finite number of elements of (,,)nen
was changed, (7, )nen converges to the same limit so that (4p)neny € D(K).

As there are a finite number of positive 7,, = —b, Uy, + dpt1%n41, their
minimum is positive and

inf(7o,. .., Tng—1,"ng ---) =17 > 0. (7.33)

Thus, we can take a nonnegative sequence (un )neny € D(K) with the associated
sequence (7, )nen satisfying inf, ey r, = r > 0. Because

o0
>y, < F00,

n=0

from the nonnegativity we must have

X 9n—1 n-l 1
Zl d ro + bouo + erigi < 00. (7.34)
n— n 1=

By construction we have r,, > r > 0 for n > 0 and byug > 0, therefore

X gn-1 n—1 1 X g1 n—1 4
00 > ro+bouo + 2origi | =7 )0 > 9 )
n=1 dn i=1 n=1 dn =0

and the series in (7.29) is convergent.

To prove the converse, define u,, by (7.30) with arbitrary (r,)nen converg-
ing to I > 0 (e.g., we may take r, = r for all n for a constant positive ). By
(7.29) (un)nen € l1, so that (up)nen € D(K) and because I > 0, the thesis
follows by (7.24). O

Remark 7.18. The condition (7.29) is identical to the condition of [8, Chapter
3, Theorem 2.3] for uniqueness of minimal dishonest solutions to the forward
equation. In the present context this result is stronger as it gives uniqueness
among all possible /1 solutions.

7.6 Examples

We provide a few examples showing that all possible cases of relations between
the generator and maximal and minimal operators can be realized.

Proposition 7.19. If both sequences (b, )nen, (d;)nen ¢ 11, then K =
A+ B = K. In particular, this is true for the standard birth-and-death problem
of population theory where the coefficients are affine functions of n.

Proof. Expanding (7.29) we get, for a fixed n,

1 br-1 bp—1...b1 1
— (1 ST Lt T B S
dp < + dp_1 Tt dp_1...d1) — dy
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Similarly, expanding (7.17), we get

1 dn+1
bn < + bn+1 +>

which gives divergence of both series. O

Proposition 7.20. If (d,;!)nen € l1 and

by,
lim —=¢<1, (7.35)

n— oo dn

then K = A+ B # K.
Proof. From (7.35), b, /d, < qo < 1 starting from some ng. Thus

1 b1 1
— (1 L) <=0 M, q),
7 ( o ) <7 (14 qo + M, qd)

where M,,, does not depend on n. Because qg < 1, the series (7.29) is conver-
gent. Similarly, (7.17) is satisfied as it involves d,, /b, > qo > 1, which gives
the divergence of the series. 0O

Proposition 7.21. If the sequence (dp)nen is of polynomial growth: d, =

O(n?) for some B as n — 0o, (b )pen € 11 and

by,
lim — =¢>1, (7.36)

n—oo n

then A+ B¢ K =K.
Proof. As in the above proof

1 bn—l 1
— (1 el > — (1 ]‘471 i ,
dn( +dn71+ >_dn( +qo + Mpyqp)

for some ng and gop > 1, where M,,, does not depend on n. Because gy > 1,
qp /n” diverges for any (3 and the series (7.29) diverges. Similarly, the series
in (7.17) is summable. 0O

Proposition 7.22. There are sequences (by,)nen and (dy)nen for which A+ B &
K ¢ K.

Proof. Take b, =2-3" and d,, = 3". Terms in the series (7.17) are

! 1+ ! + ! +
23" 2 22 ’
so that the series is summable. Terms in the series (7.29) are
i(1+2+~-+7”3
3" ’

so that this series is also summable. O
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Applications to Pure Fragmentation Problems

8.1 Preliminaries

In many physical, chemical, or biological systems clusters of the observed sub-
stance decay by splitting into smaller pieces. Such a process is called fragmen-
tation and occurs in a variety of situations. Examples include, for instance,
rock fracture, droplet break-up, or combustion. In the field of polymer sci-
ence bond degradation, or depolymerization, also results in fragmentation of
polymers. Yet another example of fragmentation is offered by the splitting of
phytoplankton aggregates.

Fragmentation processes can be described at a variety of levels and by
various techniques depending on what effects and mechanisms we are prepared
to take into account and how complicated a model we are ready to accept.

Our main objective is a relatively simple and yet powerful kinetic-type de-
scription of fragmentation phenomena of noninteracting particles (also called
the rate equation in the literature) that offers a unified model for a range
of applications. The information specific to a particular application is thus
referred to the coefficients of the model. If we disregard spatial fluctuations,
then the only state variable is the size of a cluster, which can be its mass,
length, or the number of basic ‘building bricks’ of which the cluster consists.
In most cases discussed here the size of the cluster is its mass and we mostly
use this term when talking about the cluster’s size. Also, to keep the termi-
nology consistent with the field the models are taken from, we often use the
name particle or molecule rather than cluster.

We focus here on continuous models; that is, we assume that the mass of a
particle can be an arbitrary positive real number. Under this assumption the
state of the system is fully described by the particle-mass distribution function
u(x), z € Ry (uis also called the density or concentration of particles). Thus,

z

/ w(z)dz (8.1)

Y
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is the number of particles having mass between y and z and

z

/u(x)xdx

Y

is the mass contained in the particles having mass within this range.

Due to the number of results on fragmentation discussed in this book, and
also due to some differences in the weighting of the presented topics for various
models, we split the presentation into two chapters. In the first we provide a
description of the fragmentation operator (which is also used in the subsequent
chapter) and discuss models in which the fragmentation of particles is the only
force driving the evolution of the system. In the second we analyse processes
where fragmentation is still the main cause of the evolution but there appear
other mechanisms of transport-type in the state space, such as growth (e.g.,
by birth process, when we describe clusters of living organisms, or when a
substance is deposited on the particles from a solute), or decay (e.g., when,
on the contrary, the particles are dissolved in the solute).

Because pure fragmentation systems are much simpler, we are able to
present a much more comprehensive theory of them than when other mech-
anisms are present. In particular, we provide a complete analysis of their
honesty and dishonesty. Moreover, we fully characterize the cases when the
generator is maximal and we discuss additional conditions ensuring unique-
ness, when this is not the case. On the other hand, for models with growth or
decay we concentrate solely on questions of honesty and dishonesty.

It is fair to note that, by confining ourselves to immediate applications of
the theory of substochastic semigroups, we have only touched the surface of
fragmentation theory. Natural extensions of the results presented here should
include, among others, analysis of dishonesty and non-maximality of the gen-
erators for more general coefficients, as well as investigation of the properties
of the fragmentation semigroup in the ‘finite particle number’ space, see Sub-
section 9.2.6. The latter is particularly important with regard to coagulation
theory. Some recent results in this and related fields can be found in, for
example, [80, 81, 111, 142, 102, 108].

It is worthwhile to note that, as in the case of birth-and-death problems,
some classes of pure fragmentation models have also been studied using prob-
abilistic methods (e.g., [84, 104, 57, 95, 58, 96]). In particular, questions of
space universality of dishonesty (see Subsections 7.4.1 and 9.2.5), as well as
its time behaviour, seem to be better understood in the probabilistic context.
The results, however, are not always easy to compare.

8.1.1 Description of the Model

In the simplest case we describe fragmentation of noninteracting particles
which break due to some corrosive chemical or electromagnetic agent present
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in the environment. The equation describing the evolution of the particle-mass
distribution function for a continuous system undergoing only fragmentation
can be derived by balancing loss and gain of particles of mass x over a short
period of time. After a suitable normalization (see, e.g., [6]) it can be written

as
0

Byu(z, t) = —alz)u(z, ) + / a(y)b(aly)uly, 1)dy. (8.2)

Here u is the distribution of particles of mass z, also called x-clusters, and a
is the fragmentation rate, that is, the rate at which mass x particles break up.
Throughout the chapter we always assume that a is (essentially) bounded on
compact subsets of (0, 00); that is,

0 € Loo1oe((0,00)). (8.3)

Thus the first term on the right-hand side, called the loss term, gives the
rate at which mass z particles vanish by fragmenting to particles of a smaller
mass. The second term on the right- hand side, called the gain term, gives
the rate at which the pool of mass = particles is replenished by fragmentation
of particles of mass y > xz. The fact that a mass y particle can fragment
into several particles of mass x < y (if « is sufficiently small) is accounted
for by introducing the nonnegative measurable function b that describes the
distribution of mass x particles, called also daughter particles, spawned by the
fragmentation of a mass y particle.
From the definition we see that for a nonnegative u(x,t) the quantity

o0

M(t) = /xu(m,t)dm (8.4)

0

is the total mass of the ensemble at time ¢ so that the natural space for analysis
of (8.2) is
X = L1(Ry, zdz).

Because the sum of masses of all particles resulting from the fragmentation
of a mass y particle should again be y, we must have

/ wb(zly)dz =y, (8.5)
0

and the expected number of daughter particles produced by fragmentation of
a mass y particle is, by definition, given by

n(y) = [ blzly)dz. (8.6)
[
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In general it is acceptable that n(y) may be infinite, [123]. In many papers b
is taken in the form of power law

bzly) = (v + 2)2" [y *, (8.7)

with v > —2 for (8.5) to make sense. This choice is dictated mainly by compu-
tational convenience. In this chapter we consider two natural generalizations
of the power law for b: b(z|y) =y~ h(z/y) and b(z|y) = B(x)y(y) for suitable
functions h, 3, and ~. For a more detailed discussion of b and its properties
we refer the reader to Section 8.2.

8.1.2 Dishonesty and Nonuniqueness in Pure Fragmentation
Models

In the physical processes modelled by the fragmentation equation introduced
in the previous subsection the mass is conserved throughout the evolution. It
follows formally from (8.2) as the expected mass rate equation can be found
by multiplying (8.2) by = and integrating over [0, oo]. Thus, by (8.4) and (8.5)

we obtain
o0

T u(z, t)xdx =0, (8.8)

0
which agrees with the physics of the process as fragmentation should simply
rearrange the distribution of masses of the particles without altering the total
mass of the system.

However, the validity of (8.8) depends on certain properties of the solution
u that we tacitly assumed during the integration and which are far from
obvious. In fact, by analysing models with specific coefficients, several authors
have observed that if the fragmentation rate is unbounded as x — 0, then
(8.8) is not valid so that there occurs an unexpected mass loss in the system.
In other words, the total mass of the system decreases. This unaccounted
for mass loss was termed shattering fragmentation and was attributed to the
phase transition in which a ‘dust’ of particles with zero size and nonzero mass
is formed. It was also conjectured that the number of particles formed in the
fragmentation event does not influence the shattering transition, [123, p.892].

In this chapter we show that shattering is an example of dishonesty and
find, for general coefficients, sufficient conditions for the fragmentation semi-
group to be honest. Moreover, for a fairly general class of coefficients, we
provide sufficient and necessary conditions for the semigroup to be dishonest.
We also prove that the coefficient b affects the occurrence of shattering thus
disproving the conjecture of [123]; see Remark 8.14.

It has also been observed in several papers (see, e.g., [6, 74]) that for
some classes of coefficients there exist multiple solutions to (8.2). For instance,
taking a simple version of (8.2),
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(oo}

Ou(z,t) = —zu(x,t) + Z/U(y,t)dy, (8.9)

x

where b(z|y) = 2/y so that it describes a binary fragmentation, it is easy to

see that .

wi(z,t) = @jT)S (8.10)
and
ot 1 ! 2
ug(x,t) =e m—k/m[%—b-t (y —x)]dy (8.11)

x

are both solutions to it with the same boundary datum wug(z) = (1 + z)73.
Their existence shows that in general (8.2) may offer an incomplete description
of the dynamics of the system. An immediate remedy seems to be offered by
an observation that the latter solution is mass-conserving, whereas the former
is clearly not and therefore should be ruled out from the considerations.

In this chapter, as in Chapter 7 before, we explain this phenomenon in
terms of the maximality of the generator of the fragmentation semigroup,
and for a large class of coefficients b(x|y) we derive necessary and sufficient
conditions ensuring that the generator is maximal. We also show that, by
imposing an additional condition that the total mass should be conserved,
the nonuniqueness of solutions can be ruled out, as suggested above.

8.2 Coefficient b(x|y)

The coefficient b(z|y) which, roughly speaking, gives the number of mass x
particles produced by a fragmentation of a mass y particle or is, more pre-
cisely, the distribution function of the sizes of the daughter particles, plays an
important role in the considerations. Unfortunately, not all aspects of analy-
sis are available for an arbitrary form of b(z|y) and therefore in this section
we discuss basic properties of b and provide some motivation for its forms
employed in the sequel.

The function b resembles the conditional density of distribution of masses
of daughter particles but it is not exactly one, as we can have more than one
mass x particle resulting from a break up of a mass y-particle, and this number
is not predetermined. We observe that f;f’ b(x|y)dx gives the expected number

of particles with mass between y; and yo. Thus f;ﬁzb(ﬂy)dx <1forz<y/2
because we can have at most one particle of mass larger than half the size of
the parent. This shows that for z > y/2 the function b(z|y) coincides with the
conditional density. Because whenever a particle of mass © >y — z > y/2 is
formed there must be an ensemble of particles of masses adding up to y — x,
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we see that fyyiz(y —x)b(z|y)dx is the expected total mass of particles smaller

than z, conditioned upon the formation of a particle of mass x > y—z > y/2.
The conditional average is at most equal to the unconditional one, therefore
we obtain that any b must satisfy the inequality:

/ wb(ely)dy > / (y—a)b(aly)dy, 0<=<y/2  (812)
0 Yy—z

Note that for binary fragmentation in which each fragmentation event pro-
duces exactly two daughter particles, the above discussion reduces to the
symmetry requirement b(x|y) = b(y — z|y).

Condition (8.12) is rather difficult to use. We have the following sufficient
condition.

Proposition 8.1. If, for every y

ess inf b(x|y) > esssup b(z|y), (8.13)
z€(0,y/2) z€(y/2,y)

then (8.12) is satisfied. In particular, (8.13) holds if v — b(x|y) is a non-
increasing function.
Proof. Introducing the new variable £ = y — x, we can rewrite (8.12) as

/ b(aly)da > / Eb(y — Ely)de,
0

0

so that (8.13) yields (8.12). O

8.2.1 Power Law Case

In most papers the authors consider b(x|y) given by the power law

b(zly) = =" f(y), (8.14)

in which case (8.5) gives f(y) = (v + 2)/y**!, with v > —2 to ensure the
existence of the integral in (8.5). From now on we assume that the condition
v > —2 is satisfied. The upper bound for admissible v is given in the following
lemma.

Lemma 8.2. Condition (8.12) is satisfied if and only if v < 0.

Proof. Sufficiency follows from Proposition 8.1 as only for v < 0 is the function
r — a¥/y’T! nonincreasing with respect to x. To show the necessity, it is
enough to show that no v > 0 is admissible. Hence, for simplicity, we assume
v > —1. Inserting b(z|y) = ¥ /y**! into (8.12), upon integration and some
algebra, we find that it is equivalent to
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(1_§)V+2>L_V7+2

v+1 v+2
“v+1 1/+1€ T

where £ = 1 —z/y and 1/2 < ¢ < 1. This, in turn, is the same as showing

that the function
F _ o v+1 v+2 1— v+2
&=~ 1ot (1-9)

satisfies F'(§) <0 for € € [1/2,1]. Clearly, we have F(1) =0 and

1 1 1 v+1
Fl=-)= 1- 2)( = .
(2) 1/+1< v+ )(2> )
Denoting r = v + 1 and taking into account that r > 0 by assumption, we see
that the sign of F(1/2) is determined by that of 2" — (r + 1). By elementary

calculus, 2" — (r+1) <0 if and only if 0 < r < 1, therefore F'(1/2) < 0 if and
only if =1 < v <0 (under assumption v > —1). Furthermore,

F'(§)=(v+2) (¢ +&T +(1-9"") = (w+2)1 - (=€ +(1-€)")

so that F'(§) = 0 for £ = 0,1/2,1 and F is monotonic over [1/2,1]. Hence,
there is no v > 0 for which F(§) <0on [1/2,1]. O

1 v+2

It is easy to see that the binary break-up occurs for v = 0. For —1 < v < 0
the expected number of particles produced in each fragmentation event is
independent of the parent mass y and equals (¥+2)/(v+1). For v < —1 each
fragmentation produces an infinite number of daughter particles.

8.2.2 Homogeneous Case

Another often used coefficient b(z|y), [63, 76, 101, 13, 41], is of the form

1 T
b(x|y) yh (y) . (8.15)
It is clear that for h(r) = (v 4+ 2)r” this case reduces to the power law.

Physically, this form corresponds to the assumption that the distribution of
daughter particles is determined by the fraction daughter mass/parent mass =
x/y and not by the masses z and y separately. In fact, because b(z|y)dz is
approximately the average number of daughter particles from a parent par-
ticle of mass y with mass in the interval [z, z + dz], for the choice (8.15) we
have b(x|y)dx = h(z/y)d(xz/y) = h(r)dr, where r denotes the daughter/parent
mass ratio. Thus, h(r) is the distribution of daughter fractions. The balance
equation (8.5) takes a simpler form

Y

1 1
O/Th(r)dr = ;/mb(ﬂy)dﬂ& =1, (8.16)

0
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/yb(x|y)d:£ = /1h(r)dr =mn, (8.17)
0 0

we see that again this model allows only a constant, that is, independent
of parent’s mass y, average number of daughter particles. As before, h need
not be integrable and the average number n of particles produced during
fragmentation may be infinite. The same argument, as in the general case,
shows that a sufficient condition for (8.12) is that h is a decreasing function.

and because

8.2.3 Separable Case

We also consider another generalisation of (8.14), given by b(x|y) = B(x)7(y).
Condition (8.5) immediately yields

() = 5 T,
[ sB(s)ds
0
so that
baly) = S22 (8.18)
gx%@ﬁ

This form of b has the mathematical advantage of allowing a complete descrip-
tion of the evolution governed by (8.2). Moreover, the number of fragments
produced by a particle of mass y

Y

y y | B(s)ds
nly) = [ baly)ds = -0—— (819)
0 Ofsﬁ(s)ds

can be y dependent, thus offering a much larger flexibility of modelling than
in the models previously discussed. In principle, for any given function n(y)
describing the average number of particles resulting from fragmentation of
a mass y particle, we can find the suitable 3 (and S0 the function b) by
solving for the g equation (8.19). In fact, with B(y fo s)ds, notlng that
Iy sB(s)ds = yB(y) — [ B(s)ds and finally puttlng D(y fo s)ds, we
obtain the differential equatlon

yD'(y)
yD'(y) — D(y)’

which, under the assumption n(y) > 1 that expresses the fact that we expect
fragmentation to occur for any mass y, can be solved giving (up to a constant)

n(y) =
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D(y) = exp (/ de :

where n(y) =1+ g(y). This gives

gl —ede) [ 10000

f@) 2 (@) 2 9(x)

However, such a 3 does not necessarily give rise to b(x|y) satisfying (8.12).
Because it is not our aim to give a full description of all possible functions
¢ producing admissible distribution function b(z|y), we only demonstrate the
usefulness of the form (8.18) to generate a natural fragments’ production n(y).
By Proposition 8.1, a sufficient condition for (8.12) is that 5(z) is decreasing,
which is equivalent to

—1+g(@)* + 3¢/ (x) =227 ¢'(2)" + 2 g(x) (¢'(z) + 2 ¢"(x)) > 0.

It is seen immediately that for the particle production n(y) = a+ by the above
condition is satisfied if ¢ > 2 and arbitrary b > 0.

Tt is also worthwhile to note that (8.18) is a natural generalisation of the
power law (8.14) in the sense that by putting n(y) = const in (8.19) and
solving for 8 we obtain (8.14).

8.3 Analysis of the Model

In this section we discuss the Cauchy problem

oo

ame:fa@wmw+/£@w@mw%w@,t>mx>m

u(z,0) = ug(x). (8.20)

We recall the standing assumption (8.3) on the coefficient a and suppose that b
is a nonnegative measurable function satisfying (8.5) but otherwise arbitrary.
As explained in the introduction, this problem is analysed in the space

X = L1 (R, zdx).

8.3.1 Well-posedness Results

To employ the theory introduced in Chapter 6, let A and B denote the ex-
pressions appearing on the right-hand side of the equation in (8.20); that is,

[Au](z) = —a(z)u(z)

and
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oo

1Bu) (z) = / a(y)b(aly)u(y)dy,

defined on all measurable and finite almost everywhere functions v for which
they make pointwise (almost everywhere) sense.
With these expressions we associate operators A and B in X defined by

[Au)(z) = [Au(z),  [Bu](z) = [Bu](z)

and both defined on
D(A)={ueX; aue X}.

Indeed, direct integration shows that BD(A) C X so that (A+ B,D(A)) is a
well-defined operator.

Thus, without any misunderstanding, the expressions A and B can be
identified with the operator extensions defined in Section 6.3 where E¢ is the
set of all measurable and almost everywhere finite functions on R, .

We can now state the following theorem.

Theorem 8.3. Under the assumptions of this section, there is an extension
K of A+ B that generates a positive semigroup of contractions (G (t))i>o0 on
X. Moreover, for each ug € D(K) there is a measurable representation u(z,t)
of G (t)ug which is absolutely continuous with respect to t for almost any x,
such that (8.20) is satisfied almost everywhere.

Proof. Tt is obvious that (A, D(A)) generates a positive semigroup of contrac-
tions and (B, D(B)) is positive. Moreover, for u € D(A) we immediately have,
by (8.5),

o0

/ —a(@)ule,t) + / a(y)b(aly)uly, t)dy | zde
0

x
oo

a(@)u(z,tizde + [ o | [ aly)b(ely)uly.Hdy | do
J+(]

! x
z—/a( Yu(z, t)a:dx—F/ u(y,t) /b z|y)xdx | dy
0
/a(:v u(z, t)rdr + /a t)ydy = 0. (8.21)
0 0

Thus, we see that the assumptions 1 to 3 of Section 6.2 are satisfied and
therefore we can use Corollary 5.17 to ascertain that there is an extension K
of A+ B generating a substochastic semigroup (G (t))i>0. For ug € D(K),
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the function ¢t — Gk (t)ug is a C'-function in the norm of X and satisfies the
equation

%GK@)UO = KGx(t)uo, (8.22)

where the equality holds for any ¢ > 0 in the sense of equality in X. The
initial condition is satisfied in the following sense
lim Gg(t)ug = ug, 8.23
Jim G (t)uo = uo (8.23)
where the convergence is in the X-norm.
To prove the second part of the theorem we turn to the theory of extensions

(Section 6.3) and the theory of L spaces (Subsection 2.1.8). First, we observe
that, by Example 6.19, the operator L is defined by

[LAl(@) = (1 + a(2)) "' f(x),

and therefore the operator T defined through Eq. (6.40) is given here by

[Tfl(@) = u(2) — L () = a(z)u(z),

with the domain D(T) = X. Hence T C A. Because B is an integral operator
with positive kernel, Lebesgue’s monotone convergence theorem yields that
B = B. Thus, Theorem 6.20 yields

KcA+B.

Hence Gk (t)ug satisfies
|:thK<t)U0:| (m) = [AGK(t)uo](x) + [BGK(t)’U,Q](.’Iﬁ), (824)

for each fixed ¢ > 0, where the right hand side does not depend (in the sense of
equality almost everywhere) on what representation of the solution Gk (t)ug
is taken.

Now using the fact that X is an L-space, from Theorem 2.40 we see that
because the function G (t)ug is strongly differentiable, there is a representa-
tion u(z,t) of Gk (t)up that is absolutely continuous with respect to t € Ry
for almost every x € R, and that satisfies

ou(zx,t)
ot

_ [;ltGK(t)uo} (2)

for almost every t and x. Hence, taking this representation, we obtain that

o

= —a(z)u(z,t) +/a(y)b(w|y)U(y,t)dy (8.25)

x

Ou(x,t)
ot
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holds almost everywhere on R?. Moreover, the continuity of u(z,t) with re-
spect to t for almost every x shows that
lim u(x,t) = u(x
T wu(, 1) = a(2)
exists almost everywhere. From (8.23) we see that there is a sequence (¢, )nen
converging to 0 such that
lim wu(z,t,) = up(z),
n—oo
for almost every x. Here we can use the same representation as above because
we are dealing with a (countable) sequence. Indeed, changing the representa-

tion on a set of measure zero for each n and further taking the union of all
these sets still produces a set of measure zero. Thus ug = u a.e. O

Because of this result we use the same notation for the abstract X-valued
functions of ¢ and their representations as scalar functions of two variables,
bearing always in mind that we select a ‘proper’ representation. Thus, for
example, for u(t) = Gi(t)up (with ug € D(K)), by u(z,t) we mean the
representation satisfying (8.25).

Let us recall that, in general, if ug € X \ D(K), then the function G (t)uo
is not differentiable and therefore cannot be a classical solution of the Cauchy
problem (8.22), (8.23). It is, however, a mild solution, as defined by (3.13).
That is, it is a continuous function such that fotu(s)ds € D(K) for any t > 0,
satisfying the integrated version of (8.22), (8.23):

t

u(t) =up + K [ u(s)ds. (8.26)
/

Corollary 8.4. If ug € X \ D(K), then u(z,t) = [Gx(t)uo](z) satisfies the
equation

u(z,t) = up(x) —a(w)/u(m,s)ds+/a(y)b(m|y) /u(y,s)ds dy. (8.27)

Proof. Because u is continuous in the norm of X, we can use (2.68) to claim

that a(x) fotu(x, s)ds is defined for almost any = and any ¢, and hence we can
write

(A+B)/tu(8)d8 (z) = —a(fﬂ)/tu(xa8)d8+7a(y)b($|y) /tu(y»S)dS dy.
0 0 T 0

Thus, combining the result used in the previous theorem that K € A+ B
with (8.26) we obtain (8.27). O



8.3 Analysis of the Model 209

Next we provide a fairly general condition for honesty of (G (¢))i>o0.

Theorem 8.5. If
lim sup a(z) < +o0, (8.28)

z—0t

then (G (t))i>o0 is honest.

Proof. We use Theorem 6.22. Because ¢ is the zero functional by (8.21), we
have to prove that for any f € F, such that —f + BLf € X the following
inequality holds,

oo

/[Lf}(a:)xdx + / (—f(z) + [BLf](z)) zdx > 0. (8.29)

0

We simplify (8.29) by defining g(z) = [Lf](z) = (1 + a(z)) " f(x) € X4 and
inserting it into the inequality. Hence, we obtain that (8.29) holds if for any
g € X4 such that —ag + Bg € X we have the inequality

oo

(—a(x)g(x) + [By](z)) zdz > 0. (8.30)

By (8.3) and (8.28), the function ag satisfies ag € L1([0, R],zdz) for any
0 < R < +o00, therefore the same is true for Bg. We observed earlier that B is
given by the integral expression B, hence

R—oo

0o R
/ + [Byg](z)) xdx = lim / + [Bg](z)) xdx
0 0

R
:Rlim —/a xdm—i—/ / )b(x|y)g(y)dy | zdx
0 0

x

Next, by (8.5),

where
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Combining, we see that

o

/(—a(x)g(m) + [B)(x)) xdr = Jim Sg >0 (8.31)
0
so that Theorems 6.22 and 6.13 give the thesis. O

8.3.2 An Approach Based on an Approximation Technique

In this section we show that an old method of Reuter and Lederman (e.g.,
[144, 59]) for solving Kolmogorov equations, that was briefly described in
Section 7.3, can be modified to solve the initial value problems for fragmen-
tation equations. This approach was used in this context recently in [124] but
we follow a slightly different path based on [36] where it was applied to a
semiconductor equation.

Throughout this section we assume that the fragmentation rate is bounded
on bounded subsets of [0,00) (contrary to (8.3) where we allowed singularity
at = 0). In other words, for each N there is My such that

esssup a(zr) < My. (8.32)
0<z<N

The idea of this method is to approximate the solution of Eq. (8.2) by
a sequence of solutions of cut-off problems of a similar form. In this way we
obtain the solution of (8.20) in a much more constructive way which then
allows us to strengthen the uniqueness result.

We introduce the projection operators defined for a function u € X =
Ly (R, xzdx) by

~ Ju(z) f0<x <N,
(Pru)(z) = {0 it x> N. (8.33)
For a fixed N the projection Py acts onto the closed subspace Xy =
L1([0, N],zdz) of X. Accordingly, we define Ay = APy = PyA = Py APy,

that is, Ay is the operator of multiplication by —a restricted to [0, N] and
By = PyBPy. With some abuse of notation we consider Ay and By both
in Xy and X. Let us denote Ky = Ay + Bx. We have

Lemma 8.6. For each N, Ky generates a positive uniformly continuous
semigroup of contractions on Xn, say (Gn(t))i>0, which is conservative on
XN +. Moreover, for any M > N andt > 0, PNGu(t) Py = Gn ().

Proof. The operator Ay is bounded, (8.32). For By we have

N N

nmwmz/ /mwmwwm vde

T
N

/ WI/Mﬂwm =/ah¢m@<Mwwm,
0

0
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so that By is also bounded. Hence Ky generates a uniformly continuous
semigroup. Let us denote this semigroup by (G (t))¢>0. Clearly, Ax generates
a positive semigroup of contractions and By is a positive operator. Moreover,
by similar calculations as above,

N

N
/M@MLUMx+Jx

0

\2

a(y)b(z|y)uly, t)dy | dx

Y

aly)uly. 1 / b(aly)zds | dy

0

a(z)u(z, t)zdx +

=— | a@)u(z, t)zdz + [ a(y)u(y,t)ydy = 0; (8.34)

0\2 0\2
o, O~ %

thus, by Corollary 5.17, (G (t))¢>0 generates a positive semigroup of contrac-
tions. Because all the operators are bounded, (Gn(t))i>0 is honest.
To prove the last statement we observe first that because

BPyu = / a(y)b(ely)uly)dy

for 0 < x < N and BPyu = 0 for z > N, we have BPyu = PyBPyu. Fur-
thermore, clearly APyu = Py APyu, hence we have also K Py = PNKPy =
KN.NeXt,byPNPM:PMPN:PNWGhaVGPNKMPN:PNKPN:KN
and, by induction,

Pn(Ka)"Py = Py(Ky)" 'Ky Py = Py (Ky)" ' Py K Py Py
= Pn(Kpy)" 'PyPyKPy = Py(Ky)" ' PyKy = (Kn)",

by induction. Because, for the bounded operator K, the semigroup is given
by the exponential formula, we have for ug = Pyug,

o0 " Py (Kpr)"P oo (K )"
fwm@m%:z—J%#Lﬂw:z—%ﬁwFﬁmmm
n=0 . n=0 .

and the lemma is proved. O

The family (Gn(t)):>0 can be extended to the uniformly continuous family
of operators defined on X by

Gn(t) = PyGy(t)Py.

Note that (Gn(t))i>0 is no longer a semigroup. On the other hand, the op-
erator Ky, as a bounded operator on X, generates a uniformly continuous
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semigroup, denoted by (Sn(t))i>0. As the restriction of Kn to the comple-
ment of X is the zero operator, it generates there a constant semigroup and
we have

SN(t)ZPNGN(t)PN+(Ix—PN), (835)
where Iy is the identity on X. Thus Sy (t)Pyu = Gy (t)u.

Remark 8.7. The above indicates the difference between the approaches of
Kato and Reuter and Lederman. Kato’s method amounts, in our setting, to
approximating the operator B by a sequence of operators B, in such a way that
the operators A+ B,. generate a sequence of increasing semigroups converging
to the semigroup for which we are looking. A disadvantage of this method lies
in the fact that the operator of multiplication by —a is unbounded which at
the start introduces a restriction on classes of solutions that can be obtained
this way. On the other hand, in the Reuter—Lederman method we approximate
the function —a as well, and thus we extend the net to cover a much larger
set of potential solutions. The disadvantage here is that the approximating
sequence is either not increasing or it does not consist of semigroups, and this
limits the availability of a number of techniques. In the proposition below we
show how to combine properties of (Sn(t))¢>0 and (G(t))¢>0 to produce the
desired result.

Proposition 8.8. The families (Sy(t))i>0 and (Gn(t))i>0 have the following
properties.

(a) For any fized t the family (Gn(t))i>0 is increasing with N;
(b) There is a positive Cy-semigroup of contractions, say (G(t))i>0, such that
forue X, andt >0

Gt)u= lim Gn(t)u = A}im Sn(t)u in X; (8.36)

N—o00
(c¢) Both limits in (8.36) are uniform in t on bounded intervals.

In particular, for ug € Xy,
G(t)uo = PrrGar(t) Pasug. (8.37)
for any M > N.
Proof. To prove (a), let « > 0 and define
un(t) = PyGn(t)Pyu = Gy (t)u > 0.

In particular, by the monotonicity of the projection operators we have (Py 11—
Py)uns1(t) > 0. On the other hand, because dunyi1/dt = Knyiuni1, we
obtain

%PNUNJA = PNKni1Pvunyr + PnEny1(Pyg1 — Py)uns-
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However, PN Kn4+1 Py = Kn and PNAN+1 = PyAp so that

PnEKni1(Pnt1 — Pyv)un+1 = PNAN(Py+1 — Pnv)un+
+ PyByyi1(Pvt1 — Py)unt1 = PvBnia1(Pyy1 — Pyv)un41 >0,

and Pyun+1(0) = Pyu = upn(0). Thus, by the Duhamel formula in Xy,

t
PNUN+1(t) = GN(t)PNu+ /GN(t — T)PNBN+1(PN+1 — PN)UN+1(T)dT
0

and
PNUN+1(t) = PNPNUN+1(t) Z PNGN(t)PNu = GN(t)u.

Combining the estimates, we get

Gr1(tu = uny1(t) = Pyyrunyi(t) > Pyunia(t) > Gy (t)u.

The family (Sx (t))s>0 is not increasing with N; we have, however, Sy > Gy

_ Because the space X = Li(Ry,zdr) is a KB-space and the sequence
(Grn(t)u)nen is nondecreasing with |Gy (t)ul|x = [|Gn (t)ullxy = [[Prvullxy <
|lu|lx provided u > 0, we can define

G(t)u = Jim Gyt)u, t>0, u>0,
and by linearity this definition can be extended to arbitrary u € X. Moreover,
by (8.35) we get Sn(t) — Gn(t) = (Ix — Pn), and, because limpy_,o0(Ix —
Py)u = 0 for any fixed u, we obtain

Gt)u= lim Sy(t)u, t>0
N—o0

for any u. Therefore, (G(t))¢>0 is the strong limit of a sequence of uniformly
bounded positive semigroups of contractions. To prove that (G(t))i>0 is a
positive strongly continuous semigroup of contractions we proceed similarly
to, for example, [105, 164]. The semigroup relation G(t + s)u = G(t)G(s)u
is just the limit relation for (Sn(t)):>0. However, to prove that (G(t))i>o0
is strongly continuous at t = 0, we have to modify the classical argument
of [105], used already in Theorem 5.22, as (Sn(t));>0 is not an increasing
sequence. Thus first take u = Pyu for some fixed N; then for m > N we have
Sm(t)u = G, (t)u and for such m, as t — 07,

Gt —ull < G (t)u = Gon( + | Gon ()t — ]
= G (@)ul = | Gon 0yl + G (1) ]
< flull = S E)ull + 1Sty — ]| 0.
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For arbitrary u we use the density of compactly supported functions in X and
the boundedness of (G(t))¢>o.

The uniform convergence of (G (t)):>o follows by the argument of Dini, as
used in the proof of Theorem 5.22. To prove this statement for (Sn (t))>o0 it is
enough to note that the difference between Sy (t)u and Gy (¢)u is independent
of t.

Equation (8.37) follows directly from the last statement of Lemma 8.6. O

Next we prove the minimality of (G(t));>o that is crucial for the uniqueness
investigations.

Proposition 8.9. Let (z,t) — u(z,t) be a function integrable on [0, N]x [0, T
with respect to the measure xdxdt for any N, T > 0 and assume that u satisfies
for almost all (x,t) the integral version of (8.2):

(s 1) )+ / O+ [Bul(z,s)ds,  (838)

where ug € X. Then, for allt > 0 and almost all x,

u(z,t) > (G(t)ug)(z). (8.39)

Proof. The basic ideas of the proof are the same as used in [144] but, because
the functional setting is different, the technicalities are more complicated.
First, note that the assumptions yield that [Bu](z, t) is finite for almost every
t and z. Next, integrating both sides of (8.38), we obtain that for any 0 <
N<ooand 0<t<T <

// ) + [Bu)(w, 5)) xdxds < +oo0.

By the integrability assumption on u and (8.32) we have

t t

N N
/ /a(m)u(m,s)ds xdx —/ /a u(z, s)xdx | ds < o0,
0 0

0

hence also
N/t t /N
/ /[Bu] (z,s)ds | xdx = / [Bu(z, s)xdx | ds < 400, (8.40)
0 \o 0 \0

where in both cases the change of order of integration is justified by the
positivity of the integrands and the Fubini—Tonelli theorem. In particular,
this shows that —au + Bu € L1([0, N] x [0, T], xdxdt).
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Defining uy = Pyu we see that uy satisfies

t

un(x,t) = PNuo(x)+/(—a(x)uN(x7s)—|—[BNuN](x,s))ds—i—/f(x,s)ds
0

0

(8.41)

where -
f(2.5) = B — Py)ul(z, s) = / a()baly)uly, dy  (8.42)

N

for 0 <z < N and f(x,s) =0 for z > N. By positivity and (8.40) we have

]V /f x,8)ds :cda:-]v / /OO W(z|y)u(y, s)dy | ds | zdx
0 0
0 0 x 0 3

hence f € L1([0,T], L1 (R4, zdx)). Now, considering

t+17 N

un(t+7) —un(t)]x < //\— + [Bu](x, s)| wdxds

we see that because —au + Bu € L1(][0, N] x [0,T], zdzdt) and the measure
of [t,t + 7] x [0, N] goes to 0 as 7 — 0, the function t — uy(t) is an Xy
continuous function for any N < co. Hence (8.41) can be written as

t

UN(t) = PN'LL(] + /(—AN + BN)UN(S)dS + /f(s)ds, (843)
0

where f, given by (8.42), is an L1 ([0, T}, X) function. Because —Ay + By is
a bounded operator, we see, by Proposition 3.31, that uy is a mild solution
to the Cauchy problem
duN
dt

and must therefore be given by the Duhamel formula

:(—AN+BN)UN+f, UN(O):PN’U,O

t

’U,N(t) = GN(t)PN’LLQ + / GN(t - s)f(s)ds
0

Thus, for any N, uy(z,t) > (PnGn(t)Pyug)(x). As uy converges to u and
(PnGn (t)Pyug) converges to G(t)ug, we get (8.39). O
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In the final result here we prove that the semigroup (G(¢))¢>0 constructed
in Proposition 8.8 coincides with the semigroup (Gx (t))¢>0 of Theorem 8.3.

Proposition 8.10. Under the assumptions of this section

GK(t)’LLQ = G(t)’u,o, t>0,ug € X.

Proof. In the first step we use Proposition 5.7. Clearly, because a satisfies
(8.32), the subspace

Xo = U XN
N=0
of all functions of X that have bounded support is a core for the multiplication
operator A. From (8.37) it follows that X is a subset of the domain of the
generator of (G(t))i>o because G(t)|xy, = Gn(t) is a uniformly bounded
semigroup and therefore differentiable on the whole space. Thus Proposition
5.7 yields
G(t)uo Z GK(t)’LLO

for any ug € X4. On the other hand, taking ug € D(A); C D(K) and
integrating (8.25) with respect to ¢, we see that [Gx (t)uo](r) satisfies (8.38)
and therefore by (8.39),

G(t)’u,o S GK(t)uo.

Hence, for ug € D(A), we obtain
G(t)uo = GK(t)uo.

Because any element in D(A) can be expressed as a difference of two nonneg-
ative elements, we can extend this equality to D(A) and, by density, to X.
O

8.3.3 Full Description of Dynamics in the Separable Case

In this section we provide a complete description of the dynamics of the frag-
mentation equation; that is, we give necessary and sufficient conditions for
honesty and for the nonexistence of multiple solutions in the case when

baly) = 22

J B(s)sds
0

We start by determining under which conditions the generator K of (Gx (t))i>0
is the maximal operator. By Section 3.6, this is equivalent to the fact that
all the X-valued solutions to (8.20) are given by the semigroup (Gx (t))¢>0 so
that there are no multiple solutions.
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Let us recall that the maximal operator K., was defined by

oo

[Kmaxul(x) := [Aul(z) + [Bu](z) = —a(z)u(z) + / a(y)b(xly)u(y)dy (8.44)

T

on the domain
Diax = {u € X; oz — [Au](z) + [Bu](z) € X}. (8.45)

Note that this definition implicitly requires y — a(y)b(z|y)u(y) to be Lebesgue
integrable on [¢,00) for any ¢ > 0 and almost every x > 0. We need the
following lemma.

Lemma 8.11. Let o > 0 and f be integrable on compact subsets of (0,00)
and monotonic close to 0. If lim,_q+ f(z) = 400, then f'e=* € L1([0,7])
for some r > 0.

Proof. We can assume that f > 0 on [0,6] for some 6 > 0 and that f is
decreasing on this interval. Because e~t < ¢=2 for t large enough, we can
find 0 < 7 < § such that e=®/(®) < (af(z))~2 for = € [0,7]. Then, for any
0 < e <r, we have

T

/

€

f(w)em o

BRRYAC PR WO S S B
wETE) ot @ (77 79) ~ 7w

as € — 07, which gives the thesis. O

Theorem 8.12. Let B(z) := b(x|z)/(1 + a(x)). Then K # Kmnax if and only
if

B(z) € L1([N, c0)) (8.46)
and

zB(x) ¢ L1([N, 00)) (8.47)

for some N > 0.

Proof. Because K is dissipative, its spectrum is contained in the negative
complex half-plane. Thus, by the results of Section 3.6, K # K.« if and only
if there are solutions in X of the eigenvalue problem

o0

Nau(z) + a(w)u(z) — / a(y)b(zly)uly)dy = 0, (8.48)

xT

for A > 0. Assume that there exists u € Dpax satisfying (8.48). Denoting
U(z) = u(x)/B(x) we transform (8.48) into
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oo

(A + a(2)U(x) - / a()b(ly)U (y)dy = 0. (8.49)

x

Changing the dependent variable according to Z(z) = [ a(y)b(y|y)U(y)dy,
we observe, from the definition of the maximal operator (8.44), that the inte-
grand is integrable over any interval [e,00) so that the integral is absolutely
continuous at each x > 0 and we can thus differentiate, converting (8.49) into

the differential equation
Z' _ a(x)b(z|x)

Z  Atax)’ (8:50)
with the solution
_ a(s)b(ss)
Z(x) = Cexp (—/ N+ als) ) ) (8.51)
1
where C' is a constant, so that
Bl [ als)b(s]s)
u(z) A+ a(z) P ( / A+ af(s ds)
1
L B(z) [ blsls)
=C = exp /\/ \ ) ds
(A +a(x)) [ s8(s)ds 1
0
e bale) T bl
fC’x()\_‘ra(x))ep ’\1/A+a(s)d , (8.52)
where C’ is a constant and where we used
/b(s|s)ds :/fﬂ&ds = ln/tﬁ(t)dt+0”,
1 1 ({tﬂ(t)dt

for some constant C”.

Note that all properties of u are independent of A as long as it is positive;
thus, in what follows, we put A = 1. Dropping unimportant constant C’, we
have to investigate the integrability of

a(z) = zu(x) = B(x) exp /B(s)ds ) (8.53)

close to 0 and for large x. Let us start with integrability in a neighbourhood
of 0. Then we can assume that z < 1 so that
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a(x) = B(x) exp —/B(s)ds ,

with positive integral. If B(x) € Ly([0,1]), then @ € L1([0,1]) too, be-
cause the exponent is smaller than 1. Conversely, if B(z) ¢ L1([0,1]), then

f B(s)ds diverges monotonically to +o0o as z — 0T so that we can
apply Lemma 8 11 to see again that @ € L1([0,1]). Let us now consider inte-
grability for large x. If B ¢ L1([N, 0)), then @ ¢ L1 ([N, o)) too, because the
exponential factor in (8.53) is greater than 1. Conversely, if B € Ly ([N, 00)),
then

oo

u(x) < B(x)exp /B(s)ds € Li([N, 0)).
1
Hence, for K # Kpax it is necessary that B(x) be integrable at infinity.

However, at this moment we do not know whether w, defined by (8.52), is
a solution to (8.48). To this end we have

[ sttty = sta) [ L / WP 4| ay
= —0(x) |exp —/mds = (A +a(x))u(x)

y=a

— B(x) lim exp| — (8.54)

Yy—00

S c—
Q
=~
w
N
S
—~
.
»
S~—

jsW
V2

A+ a(s)

Thus, u is a solution to (8.48) (with A = 1) if and only if

7(1 $)b( s|s o
+als) ’
1

Transforming the integral, as in (8.52), we get

1/al +a(s /b s)ds = /B
= 1n/sﬁ(s)dsln/sﬂ(s)ds]B(s)ds,

0 0 1

and, because the last integral tends to a finite limit as £ — oo, we must have
I sB(s)ds = oc0. O
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To address the shattering problem, we use Theorem 4.3 or, more precisely,
Corollary 6.15. Denoting, as in previous sections, Ly = R(\, A), we see that
BL,, given here by

(BLA) = [ B )y

x

is everywhere defined and positive and hence, by Theorem 2.65, it is bounded.
Therefore there exists a bounded adjoint (BLy)* on X*. To find the formula
for (BL))*, we choose the duality pairing between X and X* to be

<f,g>= /f(m)g(a:)dx, feX,ge X

thus
X* = {u; u is measurable and ess sup z~ *|u(x)| < co}.
z€[0,00)

Formally we have

Ji 2ly)
<(BL))u,g> = —~——>u(y)dy | g(x)dx
0/ / A + a(y)

x

_/)\—l—a /b z|y)g(z)dz | u(y)dy.

This formula is valid for nonnegative u and g by the Fubini—Tonelli theorem
and for arbitrary ones from linearity, so that

Yy

(BLal) = 50 | [stelgteriz | 559

A+ aly
0

Theorem 8.13. Assume that lim,_ o+ a(x) exists (finite or infinite). Then
K = A+ B if and only if for some 6 > 0,

bifx”;) ¢ L1((0, ). (8.56)

Proof. According to Corollary 6.15 we have to analyse solvability in X* of

o(y) - / b(xly)g —0. (8.57)
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Similarly to the proof of Theorem 8.12, we introduce G(y) = [ g(z)3(x)dx
and transform (8.57) to

a'(y) = ‘Mem (8.58)

Thus, up to a constant,

vty [ bl
_C)\—i—a(y) p( )\1/)\+a(s)d)’ (8:59)

-1
for the constant C' = (folsﬁ(s)ds>
Let us first address the question of when g is a solution to (8.57). We have

atw) ([
ey ( / b<x|y>g<x>dm)

(e al) [ sB(s)ds (O ta(e) [ 5
1
a(y) a(s)b(s|s)
=g(y) — Yy : hm+ exp (— (s ds) ,
(A +a(y)) [ sB(s)ds " / At al

/Mds . (8.60)

On the other hand, g € X* if and only if

v a(y)| = X j-(zzy) exp (—)\/ Abisiil)ds) < 4000 (8.61)
1
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for a.a. y. Because this expression is bounded as y — oo, (8.61) is equivalent
to

aly) [ bisls)
mexp A/st < 400 (8.62)

as y — 0%. Summarizing, K # A+ B if and only if (8.60) and (8.62) are
satisfied. To obtain (8.56) we note that

€

tB(t)dt— lim In / tB(t)dt = +00 (8.63)

e—0t

O\H
o>
—
o
&
ISH
w
Il
O\H
w
=
=
QL
»
Il
—
B
O\H

0

as [;tB(t)dt converges to 0 with € — 0 due to the integrability of ¢3(t) over
any finite interval. Let b(z|x)/a(z) ¢ L1([0,d]). Due to assumptions, a has
either a finite limit at 0, or tends to +oco. In the first case, K = A+ B by
Theorem 8.5. If a tends to infinity, then a(z)/(A + a(x)) tends to 1 and, by
assumption,

1 1
b(x|z) 1
[ B = [ s =
0 0
as 1 + A/a(x) is bounded away from zero. Thus (8.62) does not hold and
g ¢ X*; consequently 1 ¢ o,((BLy)*) yielding K = A+ B.

Conversely, let b(z|x)/a(z) € L1([0,9]). In this case (8.62) is satisfied.
Next, because b(z|z) is not integrable and a(x) has a limit, it must be co and
therefore again a(x)/(\ + a(x)) is bounded away from zero and so (8.60) is
satisfied due to (8.63). Thus 1 € ¢,((BLy)*) and consequently K # A+ B.
O

Remark 8.14. In [123, p. 892] the authors note

We also find that the number of particles that are formed during a
breakup event does not influence the shattering transition.

This statement, by (8.56), is false in general. However, the techniques em-
ployed in the early papers allowed one to deal only with b given either by the
power law (8.14), or by (8.15), where we always have b(x|r) ~ x~!. Hence
their statement is correct if it is restricted to these two cases.

Example 8.15. As an example, let us consider the case of arbitrary fragmen-
tation rate a(x) satisfying the condition that both (possibly infinite) limits
lim, 00 0 a(x) = o 0, Tespectively, exist and let b(z|y) = (v + 2)z¥/y* L. In
this case B(z) = z¥ with v > —2 so that [ s3(s)ds = oo and (8.47) is always
satisfied. Moreover, because b(z|z) = (v + 2)/z, we can restate Theorem 8.12
by saying that K # K.« if and only if
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%@) € L1([N, 00)). (8.64)

Summarizing, we have the following equivalent conditions.
K = Kpax if and only if 1/za(z) ¢ Ly ([V, 0)), 0< N < +c0
K = Ky if and only if 1/za(x) ¢ L1([0,0]), 0<d<oo. (8.65)

Note that Theorem 8.5 ensures the conservativity (honesty) of (Gx(¢))i>o0
provided [y < +00. However, from the above conditions, it follows that there
are fragmentation rates a, infinite at * = 0, for which the fragmentation
semigroup is still conservative. Indeed, consider a(r) ~ —Inz close to 0.
Because then 1/za(x) ¢ L1([0,6]), Theorem 8.13 states that in this case the
semigroup (Gx (t))i>o is still honest.

Remark 8.16. A natural question to be asked about Theorem 8.13 is whether
the stated result K = A 4+ B can be improved to K = A 4+ B. One can prove
(see [87]) that in general the answer is negative. To simplify the presentation,
we confine ourselves to the power law case: a(z) = 2%, b(z|y) = (v+2)a" Jy* 1,
v > —2. From Example 8.15 we know that in this case for (Gx(t))i>0 to be
honest it is necessary and sufficient that « > 0. If « = 0, then the operators A
and B are bounded and clearly K = A+ B. Hence, we can assume « > 0. From
Theorem 8.13 we see that in this case 1 ¢ o,((BLx)*), that is, 1 ¢ o,.(BL)
and because from Theorem 4.3(a) it follows that 1 ¢ o,(BL)), we see that
1 € 0.(BLy)) U p(BL,). Hence, by Theorem 4.3(c), to show that K # A+ B
it suffices to show that 1 ¢ p(BL,) for some A > 0. Let us denote L; = L and
consider the equation

fe —(BLf: =0, ¢>0. (8.66)
Denoting u¢(z) = [Lfe](z) = (1 4+ 2%) 7! fe(x), we see that uc satisfies
ug(x) + x%uc(z) — ([Bucl(x) = 0,

which is of the same form as Eq. (8.48). Hence, using the same approach and

formula (8.52), we obtain
iy [
felz) =a"exp| —C(v +2) / ﬁds =2'(1+ IQ)*C(V‘FQ)/OL
1
and f; € L1(Ry4,zdz) for any ¢ > 1 (remember a > 0,v > —2). To check
whether f is the solution to (8.66) we evaluate

oo
a—1

(BL@) = v+ 200" [ oy

x

1 v . 1 1
= Z‘T <_ yli,rgo (1 + yo)wt2)/a + 1+ $Q)C(V+2)/a)
1 Y 1
= v ey — ¢fel)
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as ((v+2) > 0. Thus, we see that for any { > 1, f¢ is an eigenvector of BL
corresponding to the eigenvalue 1/¢ and hence (0,1) C 0,(BL). Because the
spectrum of any operator is closed, we see that the value 1 € ¢(BL) and, by
the previous considerations, 1 € o.(BL) and K # A+ B by Theorem 4.3(c).

8.3.4 Uniqueness of solutions when K # Kp,ax

When K # Kpax then, as we know, there are multiple solutions to (8.20) or,
in other words, the semigroup (Gk(t)):>0 does not capture all the solutions.
This shows that (8.20), as it stands, does not determine the whole dynam-
ics of the fragmentation process. A natural question then arises as to what
additional condition should supplement (8.20) to ensure the uniqueness of so-
lutions. One can show that for a large class of coefficients the solutions are
unique in the class of positive and mass conserving, that is, physically reason-
able, solutions. In this subsection we prove this statement for two classes of
problems: when the fragmentation rate is bounded at = = 0 and for separable
coefficient b with a such that (Gk(¢));>0 is honest. It is important to note
that (Gg(t))i>0 is also honest in the first case: for dishonest fragmentation
semigroups, mass is lost from the system at an uncontrolled rate and thus
imposing a conservativity condition does not make any sense.

We also note that for a well-researched case of power law a(x) = z%,
conditions (8.65) give an alternative: for « # 0 the process is either honest but
has multiple solutions or is dishonest with no multiple solutions. In this case
the results obtained below ensure the uniqueness of solutions: unconditional
for a < 0 (K = Kpax) or subject to the additional requirement of positivity
and conservativity of them for a > 0.

Theorem 8.17. Assume that the fragmentation rate satisfies (8.32); that is,
it is bounded on bounded intervals of [0,00). If u is a nonnegative function
that is integrable on Ry x [0,T], T < oo with respect to the measure xdxdt,
that satisfies

for any t > 0, then
u(z,t) = [Gx(t)uol(x) (8.69)

for any t > 0 and almost any x € [0,00).
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Proof. By Propositions 8.9 and 8.10 we have
u(z,t) > [G(t)uo)(x) = [Gk (t)uo](z).

On the other hand, for any ¢ > 0,

oo

/(u(:ﬂ,t) — [Gk (t)uo)(z)) zdx = /u(w,t)xdz - /[GK(t)uo](x)xd:c
0

from Theorem 8.5, and, because the integrand on the left-hand side is non-
negative, we obtain (8.69). O

Let us turn now to the case when b is separable, that is, given by Eq.
(8.18). This case was fully analysed in Subsection 8.3.3.

Theorem 8.18. Assume that b is given by (8.18), lim, .o+ a(z) exists (finite
or infinite), and for some 6 > 0,

b(x|x)
a(x)

¢ L1([0,9]).

If u is a nonnegative function that is integrable on Ry x [0,T], T < +o0, with
respect to the measure xdxdt, which satisfies

u(x,t) = up(z) + / (—a(z)u(zx, s) + [Bul(zx, s)) ds, (8.70)
0

where ug € X4, and

u(z, t)xdr = [ up(x)xdx (8.71)
o]
for any t > 0, then

u(z,t) = [Gr(t)uo](x) (8.72)

for any t > 0 and almost any x € [0,0).

Proof. Under the additional assumption that w(t) is a continuous function,
this theorem would follow from the results of Section 3.6. However, due to the
simplicity of the operators, it is more effective to use the ideas of that section
directly and avoid introducing the redundant assumption.

As in Section 3.6, an important role is played by the eigenproblem for the
maximal operator:
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Kmaxu)\ = AUA .

By Theorem 8.12, the only solution to this equation is given by

uy(x) :C’m exp )\/m% , (8.73)

where either uy ¢ X, in which case K = Kpax, or uy € X, whence the
eigenspace is one-dimensional. We of course focus on the second case. In par-
ticular, Ki,ax is closed by Proposition 3.52.

In the next step, we observe that by the integrability assumption on u and
Fubini’s theorem, u(x,t) is integrable with respect to ¢ for almost any x and
therefore, by (8.18), Eq. (8.70) can be written as

w(a,t) = uola) — alx) / u(z, 5)ds + B(z) / / a(y)(w)uly, s)dy | ds.
0 0 x

(8.74)
The second integral exists for any = > 0 (because if it exists for some ¢, then
it must exist for any = > xp, and it actually exists for almost any ). Hence
by the Fubini-Tonelli theorem we can rewrite (8.74) as

w(et) = uolz) — alx) / u(z, s)ds + B(z) / a(y)(v) / uly, s)ds | dy
0 x 0
= ugp(z) + Knax [ uly,s)ds. (8.75)
/

However, by Corollary 8.4, Gk (t)ug is a solution to the same integral problem.
Denoting
v(t) = u(t) — Gk (t)uo, (8.76)

we see that v solves

oo

~alx) / ol 5)ds + (o) [ alw)r(v) / o(y, s)ds | dy
0 0

x

v(z,t) =

K v(y, s)ds. (8.77)
/

By the integrability assumption on u, (8.71), and strong continuity and conser-
vativity of (Gg (t))i>0, v € L1,10c(R4, X) N Loo (R4, X) and we can therefore
apply the Laplace transform to (8.77), with abscissa of convergence equal at
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least to 0, (2.41). Denoting V) = [, e v (t)dt and using the closedness of
Kax and Proposition 2.25(c), we obtain that V) satisfies

AV)\ = Kmaxv)\a

and hence must be given by (8.73) so that for A > 0,

r _ T _ b(x|z) /m b(sl|s)
At At
t)dt = Gk ()updt+C(\) ————— A ————d
e utanit= [ MGxudrecm) LT s e [ 25 as)
0 0 1
(8.78)
where C'()) is a scalar function such that the whole last term is a holomorphic

function in the norm of X for A > 0. By (8.71) and positivity of u,

/ /e_”u(ﬂc,t)dt xdaz:/e_M /u(l’,t)ﬂ?dx dt = A" Huol
0 \o 0 0

and similarly, because the semigroup is conservative on nonnegative data, we
obtain

/ /e‘”[GK(t)uo}(x)dt zdz = A"uo]|.
0 0

Thus the integration of (8.78) with respect to the measure zdx yields

[ blalo) [ bsls) ~
C()\)O/m()\—l—a(x)) exp )\1/)\+a(s)ds xdx = 0.

Because the integral does not vanish for any A > 0, we get C'(A\) = 0 for A > 0.
Hence, the holomorphic for RA > 0 function

x
b(z|z) b(sls)

A= CAN)——"—— A —————d

—~ W a(z)) P /)\+a(s) y
1
vanishes for real positive A and therefore, by the Principle of Isolated Zeros,
it is identically zero in the positive half-plane. Consequently, v(t) = 0 by the
uniqueness of the Laplace transform. O
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Fragmentation with Growth and Decay

9.1 Preliminaries

In this chapter we discuss models in which the fragmentation occurs alongside
other mechanisms influencing evolution, such as growth or decay of clusters.
First, we describe these two cases in detail.

9.1.1 Description of the Models

As we mentioned earlier, Eq. (8.2) describes systems in which mass should be
conserved: the fragmentation process only changes the distribution of particles
with respect to their masses but does not change the total mass of the system.
However, systems which do not conserve mass during fragmentation abound.
Oxidation, melting, sublimation, and dissolution cause the exposed surface
to recede continuously, resulting in the loss of the mass of particles. The
surface recession widens the pores of a solid causing loss of connectivity and
fragmentation as the pores join each other. Thus, instead of requiring an
external break-up mechanism, fragmentation can arise from the continuous
process of surface recession destroying final bridges between different parts of
a particle. There is experimental evidence that hundreds of such fragmentation
events can occur during the oxidation of a single charcoal particle.

There are also systems in which mass loss is discrete. Typically these are
two-phase heterogeneous solids containing isolated inclusions of an explosive
phase embedded within a much slower reacting phase. In such cases we may
have both continuous and discrete mass loss. In fact, mass loss can occur
continuously during the surface recession of the slower reacting phase till an
explosive inclusion is exposed. Then discrete mass loss occurs as the mass in
this inclusion is consumed instantaneously (if compared with the rate of mass
loss during the surface recession). In this instant, fragmentation occurs in the
slow-phase regions surrounding the explosive inclusion.

The appropriate linear rate equation is a combination of (8.2) with the
term that accounts for the continuous mass loss, [63, 76, 101],
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oo

dpu(z,t) = —a(r)u(z,t) + /a(y)b(x\y)U(y,t)dy+6z[T(I)U(I,t)]~ (9-1)

x

The interpretation of v and a are the same as in (8.2); r > 0 is the continuous
mass loss defined so that r(m(t)) = —dm/dt for a particle of time-dependent
mass m(t). The discrete mass loss is taken into account by the new normalizing

condition for b: y

/wb(wly)dw =y — vy, (9.2)
0

where 0 < A(y) < 1 gives the fraction of mass lost in explosive fragmentation of
a mass y particle. The number of daughter particles spawned by fragmentation
of a parent mass y particle is again given by (8.6).

It is also reasonable to consider the following variant of (9.1),

o0

Opu(e,t) = —a(z)u(z,t) + /a(y)b(x\y)U(yJ)dy = O[r(z)u(z,t)]. (9:3)

x

The streaming term —0,[r(x)u(x,t)], where r > 0, describes processes where
particles gain mass due to deposition of matter from the environment on
them but which nevertheless can undergo fragmentation caused by an ex-
ternal agent. Another important interpretation of (9.3) comes from marine
biology where it describes evolution of aggregates of phytoplankton. The ag-
gregates are structured by their size and the phytoplankton system consists of
aggregates of all possible sizes. The aggregate size can change due to the usual
birth and death of individual cells, but there are also two other mechanisms
acting at the aggregate level: splitting of an aggregate into several parts and
combining two or more aggregates into a bigger one. If we disregard the latter
process, then we are faced with the classical fragmentation process due to
external causes such as currents or turbulence and internal unspecified forces
of biotic nature on the other hand. Standard modelling leads to the equation

oo

Opu(x, t) = =0 [r(x)u(z, )] — (d(x) + alz))u(z,t) + /a(y)b(ffly)U(y,t)dy,
xr
(9.4)
where u is the distribution of the aggregates of phytoplankton with respect
to their size/mass x, r is the birth rate, d is the death rate, and a and b have
the same interpretation as in the pure fragmentation equation.

We note that Egs. (9.3) and (9.4) do not fit into the theory developed ear-
lier as they are not dissipative. However, as we show, under certain assump-
tions they can be reduced to such and analysed by the theory of substochastic
semigroups.
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9.1.2 Dishonesty in Fragmentation with Decay and Growth

Contrary to the pure fragmentation models, in the physical processes modelled
by the equations introduced in the previous subsection the mass/size is not
conserved throughout the evolution but rather decays or else grows according
to the laws of physics used to build the model. Taking as an example the
fragmentation process with continuous and discrete mass loss, we see that
the expected mass rate equation can be found by multiplying (9.1) by « and
integrating over [0, c0]. Thus, by (8.4) and (9.2), we obtain
o0 (o)

A vy = — / a()\(@)ulz, t)zds — / r(2)u(z, t)dz. (9.5)

dt
0 0

This is in agreement with the physics of the process as the terms on the
right-hand side give precisely the mass lost through, respectively, explosive
reaction and surface recession and because pure fragmentation should be mass
conserving, it should not enter into the equation describing the evolution of
the total mass of the system.

However, as for the pure fragmentation, the validity of (9.5) depends on
some properties of the solution u that have not yet been proven and in fact it
has been observed that if the fragmentation rate is unbounded as z — 0, then
(9.5) may not hold. In other words, the total mass decreases faster than sug-
gested by (9.5). This unaccounted for mass loss, as before, is called shattering
fragmentation and it is interpreted in the same way as in pure fragmentation:
as the formation of dust of particles. However, in some earlier works, [63], the
authors conjectured that the presence of discrete and continuous mass loss
in the fragmentation precludes the unaccounted-for mass loss associated with
shattering.

Due to (9.5), fragmentation with decay yields a perfect example of a
strictly substochastic semigroup and in the first part of this chapter we show
that shattering is an example of dishonesty of such semigroups. We find suffi-
cient conditions for a fragmentation semigroup to be honest and also sufficient
conditions for it to be dishonest. These conditions collapse into a sufficient
and necessary criterion for honesty if the coefficients have a power type be-
haviour both at * = 0 and for z tending to infinity. We also show that, in
general, the conjecture that there is no unaccounted for mass loss if there are
continuous and discrete mass loss terms, is false. However, we find that the
presence of a very fast surface recession or of a nonzero explosive mass loss of
small particles can indeed prevent shattering, even if the fragmentation rate is
unbounded at 0 (which would yield shattering in pure fragmentation models);
see Theorems 9.14 and 9.15.

9.2 Fragmentation with Mass-loss

In this section we prove the solvability of the Cauchy problem for Eq. (9.1):
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o0

Byu(, 1) = —a(z)u(z, 1) + / a(y)b(ely)uly, )dy + afr(z)ulz, ),

u(z,0) = ug(z), (9.6)

which was discussed in more detail in Subsection 9.1.1. Thus, u and a are as
in the pure fragmentation equation (8.2), the coefficient r is the rate of the
continuous mass loss, and the discrete mass loss is taken into account by the
balance equation (9.2):

/mb(x|y)dm =y — Ay,
0

where the coefficient A, satisfying 0 < A(y) < 1 for any y € R, gives an
average fraction of mass of the parent particle lost in fragmentation events.

Let us recall that the fragmentation rate a is supposed to satisfy (8.3);
that is, @ € Lo 10c((0,00)). Hence, in particular, a is locally integrable on
(0,00) (in fact, for the existence results we need only the latter property).
Furthermore, we assume that

r(z) >0 on (0,00) and r € AC((0,00)), (9.7)

where the space AC(I) of absolutely continuous functions was defined in Ex-
ample 2.3.

The occurrence of the term 9, (ru) with differentiation with respect to the
state variable makes the solvability of (9.6) a nontrivial question, especially
because of main interest here are coefficients r that vanish at « = 0. For
example, if the surface recession rate is proportional to the surface area and
the mass is proportional to the cube of the typical dimension of a particle,
then 7(z) ~ 2?/3. In such a case the differential part becomes degenerate
which, combined with other possible singularities of r allowed by (9.7) and
also possible singularities of the fragmentation rate, makes it rather difficult
to apply directly the fairly general theory of first-order equations developed
in [50, 92] and discussed in more detail in Chapter 10. Thus we have decided
on a straightforward approach that is presented below.

9.2.1 The Streaming Semigroup

As a first step towards proving the existence of the semigroup for the problem
(9.6), we establish the existence of a strongly continuous semigroup (Gr(t)):>o0
associated with the streaming part of the equation:

Opu(z,t) = O [r(z)u(z, t)] — alx)u(z,t), t>0,z >0,
u(z,0) = ug(x). (9.8)
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Our primary objective is to analyse this equation in the space X = L;(Ry, zdx)
of solutions with finite mass. However, for some applications it will be impor-
tant to have some control of the total number of particles. Due to the definition
of u, the total number of particles at an instant ¢ is given by

N(t) = / w(z, t)dz, 9.9)
0

and therefore solutions yielding a finite number of particles live in the space
Xo = L1(Ry4, dx).

Note that for the full fragmentation model A (¢) may be infinite at any time.

As the calculations are practically the same for both cases (and, in fact
for other spaces corresponding to other moments of the solution), for the time
being we adopt the uniform notation

X, = L1 (R, z"dx), k> 0. (9.10)

The norm in X}, is denoted by || - ||x; that is,
ulle =/|u(m)|xkdx. (9.11)
0

Because (8.3) and (9.7) imply that 1/r,a/r € Li0.(0,00), their respective
antiderivatives R and @, given by

R(x) :z/xr(ls)ds, Q(x) := /xiéz;ds

o xo

(for fixed xg > 0), are both absolutely continuous. Consequently, R + @ is
bounded on any compact subinterval of (0, 00), and, because the exponential
function is uniformly Lipschitz on any (fixed) compact subinterval, it fol-
lows that e+ is also absolutely continuous for any fixed constant A. Other
immediate consequences of (8.3) and (9.7) are that R is strictly increasing
(and hence invertible) on (0,00), and @ is nondecreasing on (0, 00). Define
mR,MR,mQ, and MQ by

lim R(z) = mpg, lim R(z) = Mg,

r—0 T—00
lir% Q(z) = mg, lim Q(z) = M.

We note that mp and mg can be finite or —oo, and Mg and Mg can be finite
or 4+o0. Clearly, Mr > mpr and Mg > mq, and the images of R and @) are
(mg, Mg) and (mg, Mg), respectively.
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We reformulate (9.8) as the abstract Cauchy Problem

— =T t>0
dt kU, >0,

u(0) = ug (9.12)

posed in the Banach space X}, where Ty, is formally given by Tpu = d(ru)/dz—
au. More precisely, we define

Tru :=To pu + Agu, (IS D(Tk) - D(T()JC) N D(Ak), (913)

where Tp pu := d(ru)/de and Agu := —au, and

d
D(To) == {u € Xi; ru € AC((0,00)) and @(ru) € X1},
D(Ay) :={u € Xy; au € X}

Our main aim in this section is to identify D(T}) so that (T), D(T})) generates
a substochastic semigroup on Xj.

The first step in this direction is to find the resolvent of T}, which is
formally given by the solution of the equation

Au(z) + a(x)u(x) — %(r(m)u(:ﬁ)) = f(x), A>0. (9.14)

Let us start with possible eigenfunctions of (9.14). By direct integration we
find that the general solution to the differential equation

d
Au(z) + a(x)u(z) — %(r(o:)u(x)) =0, A>0,
is given by u(z) = Cvy(z), where
AR(2)+Q()
B e WY 1) 1
NG ) e vy (). (9.15)
For such a function we have
T 2k R@)+Q@)
= —_— . -1
fonlle = [ s —da (9.16)

This integral is finite for some choices of r and a (e.g., for r(z) = aP with
p >k + 1 and a bounded and integrable). In fact, then R(x) = 2177 /(1 — p)
and

by Mg T g=At/(p—1)
Mg k—p AN _ € €
oalle <e /x exp( = 1)x1’1> dx - / o= At < oo

0 0
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In this case the multiplication by a doesn’t impose any new constraints and
because clearly (rva)s = avy + Avy, we see that vy € D(Tp i) N D(Ag).
Thus (M — Ty, D(To k) N D(Ag)) is not invertible for A > 0 and therefore
(Ti, D(To,x) N D(Ag)) cannot be the generator of a Co-semigroup in such a
case. Hence our first aim is to determine the domain D(T}) of T for which
(M — Ty, D(Ty)) is invertible for all A > 0 and functions r and a satisfying
(8.3) and (9.7).

Lemma 9.1. For each A > 0, let
Jo() 1= /xm(x)dx — lloalle, (9.17)
0
where vy is given by (9.15). Let us fix some k > 0.

(a) If M = oo, then Ji(\) = oo for all A > 0.

(b) If J(X) < +oo for some XA > 0, then Mp < co.

(c) Jk(X) < oo for any A > 0 if and only if Ji(1) < co.
(d) For any u € D(Ty ) N D(Ag) and Mp < +o0,

im w@)
:clﬁoo vy (m)

(e) If Ji(X) = oo, then limy, o u(z)/va(x) = 0.

Proof. (a) and (b). Because z* exp(AR(z) 4+ Q(z)) is positive and increasing,
we obtain

u(z)

=0 if andonlyif lim =0.

T—00 V1 ((E)

o o0

Ji(A) > /xkv,\(m)dx > xlge’\R(%HQ(ro)/T(Z) = ghe ) +Q(o) pr

xo Zo
from which both (a) and (b) follow immediately.
(c) and (d). If Mp < oo, then

lim A DE@ — (A=DMr ¢ (0 x0), (9.18)

Tr—00

and therefore for any y > 0
o0 o0
/:L’km(:zr)dsc < oo if and only if /xkvl(z)dx < 00.
Y y

Because for any A > 0

y
1 d k
k _ 2 Lk Q) L ( AR(m)) < ¥ Q) ( AR(y) _ AmR)
/mv,\(x)dx )\/xe o e dm_)\e e e
0 0

(9.19)
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we obtain (c). The result stated in (d) also follows directly from (9.15) and
(9.18).
(e) Let Ji(A) = 0o and let u € D(Tp ) N D(Ag). Then, for y > 0,

/ e—AR(m)—Q(-T)%(r(a:)u(x))dx < oo, (9.20)

Furthermore, ru and e =@ are absolutely continuous and so the left-hand
side of (9.20) can be integrated by parts to produce

[e—AR(z)—Q(z)T(x)u(x)];o _ /% (e—AR(z)—Q(m)) r(z)u(z)dz
ul) - uy) [ al(x))ulx)dx

Y

from which we deduce that lim,_,. u(z)/va(z) = L < co. Suppose L # 0.
Then there exist C' > 0 and y > 0 such that |u(z)|/vx(z) > C for all x > y in
which case

Ook —Ook vA(®) lOoa:kuac T < 00
y/a: v,\(x)dx—y/x ) 2 e < Co/ lu(a)|dz < oo.

Thus, it follows from (9.19) that Ji(\) < oo, contrary to the assumption. O

The results given in the previous lemma suggest that we define D(T}) C
D(To’k) N D(Ak) by

DT = {D(To,k) N D(Ay) if Jp(1) = 400

{ue D(Ths) N D(Ap); lim M2 =0} it Jy(1) < +oo, (*22)
Tr—00

where v; and Ji(1) are given by (9.15) and (9.17), respectively. Note that
(M — T}, D(Ty)) is invertible and that the condition

Jim. ;((mx)) =0, weD(T), (9.23)

is always satisfied, irrespective of whether My and Ji (1) are finite or infinite.

Lemma 9.2. For each A > 0, let Ry () be defined by

oo

(RN f)(z) := /G,\(:c,y)i((z/))dy, fe X, x>0, (9.24)

where Gy (z,y) = vx(x)/vr(y). Then Ri(X\) is the resolvent of Ty,.
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Proof. For f € X and A > 0 we have, by the Fubini-Tonelli theorem,

xcu fW)] VP 1IW) [ [ Gl y)
[Ri(N) fllk < // dydx—_o/ @) (0/ J dac)

1
< =
A

v f(y)ldy = XHfHka (9-25)

o\

where the last inequality follows, by (9.19), from

Yy & Yy
/l’ G)\(xay) _ / k
& X ’U)\
Y b oa(y
0 0

Hence R (A) is a bounded operator on X}, with ||[Ri(N)|lx < 1/
Next we note that

>/\H

0/ (@)t (Re ) (@)l < / IO / chalaor(e)dz | dy.
Because
/yxka(z)w\(x)dx = /y:cke)‘R(r)CZj( Q= )) dz < yFe W) ( Q) ,emcz)

0
< yFr(y)aly),

we deduce that ||AgRe(A)flle < ||f|lx for each f € Xj and A > 0, and so
Ri(MN) Xk C D(Ag). Next we observe that, for f € X,
) (R ) (2) = M1 [ e AR00-00) 14

x

and both e*?*+@ and the integral (as the function of its lower limit) are abso-
lutely continuous and bounded on any compact subinterval of (0, 00). There-
fore Ry (N) f € AC((0, —|—oo)). Moreover, for all f € Xy,

ToxRr(N)f = (TRk( V) =M = A)Ri(N) f — f, (9.26)

so that Rk(/\)Xk - D(TQ}C) and hence Rk()\)Xk - D(T07k) N D(Ak) for all
A > 0. If Ji(1) = oo, we deduce immediately that Ry(A)X, € D(Ty). If
Ji(1) < oo, then

' (Ri(A).f) ()

v ()

o

B B e~ AR(2)-Q(z)
S/e AR(y) Q(y)|f(y)|dyg xi/y |f( )‘dy—>0

x x
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as x — oo and again Ry (A) X C D(T}) for all A > 0.
Finally, it follows from (9.26) that for all f € X,

M =T)Ri(A) f =M =To = Ar)Ri (M) f = (M= Ap)Ri(A) f=To xR (A) f = [

Also, for u € D(Ty), integration by parts yields

RN Tasn)a) = [ EEL )t

x

— (G - [rwutn) (GA((;”) dy = (@) Jim 20 —u(a)

x
oo

+ox(2) / (A + aly))e MW=CWy(y)dy = (R(A\) (AT — Ap)u)(z) — u(z).

x

Consequently,
RN = To — Ap)u = —Ri(A)Topu + Re(A) (M — Ag)u = u,
for any u € D(T}), and the lemma is proved. 0O

Theorem 9.3. The operator (T, D(T})) is the generator of a strongly con-
tinuous positive semigroup of contractions, say (Gr,(t))i>0, on Xk.

Proof. This follows immediately from Lemma 9.2, the positivity of Ry (\),
and the Hille-Yosida theorem. O

To complete our analysis of (9.12), we now find an explicit formula for
(Gr, (t))e>0. If we define

Y(t,z):= R R(z) +t), >0,0<t< Mgr— R(z),
then direct integration of (9.8) leads to the solution

Q@ (Y (t,x))uo(Y (t, x))
eQRQY (t,2))p CL’) ’
(9.27)
where the second equality of (9.27) is obtained by using the identities:

u(z, t) = el =D D)y (v (1, 2)) =

r(Y(s,x))dY

4 Inr(Y(s,z)) = T(V(s.2) ds r'(Y(s,x))

ds

and
Y (t,x)

/ a(Y (5, 7))ds = / U9 iy = QY (2)) — Q(z).  (9.28)
0
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If Mg is finite, then (9.27) is not defined for all ¢ > 0. To enable a semigroup
to be defined in such cases we must find a suitable extension beyond the
stipulated limits of ¢. To do this we observe that Y (¢,z) approaches +oo as
R(z)+t approaches My and thus, by (9.22), u(x,t) converges to zero (at least
for ug € D(T})). Thus a reasonable candidate for the semigroup is

QY (o) 1 (z)

[Z(t)uo](z) = 0 for R(x) +t > Mg.

{ Q@ (Y (t,2))uo (Y (t,2)) for R(.’I}) +t< Mg, (9 29)

Theorem 9.4. For any ug € X the function (t,z) — [Z(t)uo](x) is a repre-
sentation of the semigroup (G, (t))i>0 in the sense that for almost any t > 0
and z >0

(G, (H)uo](x) = [Z(t)uo](x).
If ug € D(Ty), then the equality holds for any t > 0 and x > 0.

Proof. Let us fix ug € Xj. For almost any fixed x > 0, the function t —
[Z(t)uo](x) is measurable and has the Laplace transform

o0 MR—R(JZ)

—A+Q(z)-Q(Y (t,2))
/ew[z(t)uo](x)dt: / - Y o)lu (k7)) g
J / r(zx)
AR(2)+Q(z) T
_ eT/e—*R(z)‘Q(z)uo(z)dm (9.30)

x

where the change of variables z = Y (t,2) = R™'(R(z) + t) has been used to
obtain the last formula. On the other hand, from Theorem 9.3, we have for
any ug € Xk,

/e*”GTk (tYupdt = (N — T3,) tug = R (Mo in X.
0
X}, is a space of type L for any k (see Theorem 2.39) and ¢t — Gr, (t)uo is

continuous, therefore there is a measurable representation (G, (t)ug)(z) for
which we have, for almost all z > 0,

/eﬂ\t(GT,C (t)uo)(x)dt = /67)‘tGT,C (t)uodt | () = [Rr(N)uo] ()
0 0
AR@HQ) T

= W/e_)‘R(Z)_Q(Z)uo(z)dz. (9.31)
As both [Gr, (t)up](z) and [Z(t)ug](x) are clearly locally integrable with re-
spect to t on [0,00) for almost any & > 0 and the abscissae of convergence
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of the Laplace integrals are equal to 0, from the uniqueness of the Laplace
transform (see Theorem 2.24) we infer that

(Gr, (Duol(z) = [Z(t)ug)(x), foraa. t>0,z >0, (9.32)

so that [Z(t)ue](x) is a representative of G, (t)uo.

If ugp € D(T), then from the definition of D(Tp 1) and the strict positivity
of r we obtain that ug is continuous on (0,00) so that by the discussion
preceding (9.29), [Z(t)uo](z) is continuous in ¢ € (0, c0) for any z > 0. On the
other hand, for uy € D(T}), G, (t)uo is a differentiable X-valued function so
that, by Theorem 2.40, a representative [Gr, (t)uo](x) can be selected to be
continuous in ¢ for any = > 0. Repeating the previous argument we obtain
the validity of (9.32) for any ¢ > 0 and « > 0. The extension to ¢ = 0 can be
done by continuity as uo(Y (¢, x)) is continuous at ¢t = 0 provided x > 0. O

From Theorems 9.3 and 9.4 we can state immediately that the Cauchy
problem (9.12) has a classical solution w : [0,00) — X, given by u(t) :=
G, (t)ug = Z(t)ug, for all ug € D(T))+. By further restricting ug to be an
absolutely continuous function with support in [0, N], N < oo, it is possible
to show by direct but lengthy calculations that u(zx,t) := [Z(t)ug)(x) satisfies
the initial value problem (9.8) for almost all ¢ > 0 and x > 0.

Streaming Equation with Finite Mass Range

In some applications it is important to consider the fragmentation problem

with mass range restricted to [0, N], 0 < N < oco. In this paragraph we see that

the theory developed above for Eq. (9.8) on the half-line can be easily adapted

to the case when z is allowed to change only over a finite interval. Because we

are interested in possibly all values of N, we still keep the assumption (9.7).
In what follows we define

Xy = Li([0, N], z*dx), (9.33)

with the standard norm abbreviated by |- || n k- By To 5k and Ay i we denote
the restrictions of the operators Tp ; and Ay, respectively, to the domains

D(To.ni) :=={u € Xn; ru € AC((0, NJ), %(ru) € Xy and u(N) = 0},

D(Ank) = {u € Xnx; au € XNy}, (9.34)

where the last condition in the definition of D(Tj v %) stems from the fact that
the flow occurs to the left and we need a boundary condition at the starting
point for the streaming problem to be well posed. Let us first point out that
the solutions of the eigenvalue problem

M) + afa)u(e) — - (r(z)u(z)) =
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are trivial because, as before, they must be given by scalar multiples of
e/\R(w)-i-Q(;E)

T

see (9.15). Thus Lemma 9.1 is irrelevant and, defining
Tngu = To,nku+ AN ku, D(Tn ) = D(To,n k) N D(AN k),

we can proceed directly to the generation theorem.

Theorem 9.5. The operator (T, D(Tnx)) is the generator of a strongly
continuous positive semigroup of contractions, say (Gry . (t))i>0, on Xy .

Proof. For each A > 0, let us define Ry 1 (A) by

o0

(RN f)(z) = /Gk(m,y)f((;/))dy, feXng, x>0, (9.35)

x

where G (z,y) = vx(x)/vA(y). As in the proof of Lemma 9.2 we have

NN N y
=Gy (z, k z*Gy(z,
sl < [ [ EOED G, - [P0 [Gata0,,
r(y) r(y) y
0z 0 0
N
1 [ . 1
< < [ VIFWldy = Sl (9.36)
A A
0
with the second inequality following from (9.19). Hence
RNk (Mvge < 1/A. (9.37)

In the same way as in Lemma 9.2 we deduce that [|An iRy k(N fllne <
||f||N,k for each f S XN7;§ and A > 0, and hence RN71€()\)XN,;¢, - D(Ava);
also using exactly the same argument, ¥Ry x(\)f € AC((0, N]) and, for all
f € XN,k7

TO,N,kRN,k(A)f = (T’RNJC(/\)]E)/ = ()\IN - AN7k)RN7k()\)f - f (938)

Because [Rnx(A)f](N) = 0 for f € Xy, we see that Ry k(M) Xy C
D(TO,N,k) and hence RN,k()\)XN,k - D(TN,k) = D(TQN,k) n D(AN,k) for
all A > 0. Finally, again with no changes, it follows from (9.38) that for all
feXnk

(M =Ty p)RNE(N)f = My —Tongk — Ang)RNe(N) f
= My — AN )Ry e(N)f —Ton ik Ry (M) f = f.
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Also, for u € D(Ty 1), integration by parts yields

Rovs Wi ) = [ LD r)uta)y

x

N

T
N

= —u(z) + va(2) / (A + a(z))e N FO-QWy(y)dy

= (RnpN) My — Ay p)u)(z) — u(z),
and consequently,
RNJC(/\)()\I — TO,N,k - AN,k)u = —RN,k(/\)TO,N,kU + RNJv()\)(/\I — A)u = u,

for any u € D(Tn ) so that Ry k() is the resolvent of T . The theorem
then follows, by (9.37), from the Hille-Yosida theorem (Theorem 3.5), and
the positivity of Ry x(A). O

Corollary 9.6. If the semigroup (G, (t))i>0 exists in Xy, then

GTN,k(t)f = GTk|XN,k(t)f7 fe XNJC,t > 0. (9.39)

Proof. The statement follows from
RypNf =ReNlxyif,  fE€ XNk A>0,

the exponential formula (3.22), and because X , is a closed subspace of Xj,.
O

9.2.2 Well-posedness Results for the Full Semigroup

Having established the existence of a substochastic semigroup (Gr(¢))¢>0 as-
sociated with the streaming initial value problem (9.8), we now turn our at-
tention to the full mass-loss fragmentation problem (9.6) and show that it
can be analysed using the theory of substochastic semigroups. In this section
we only work in the space L1 (R, zdx) so we revert to the previous notation
and call this space X also dropping the subscript k£ from the notation of the
operators. Rewriting (9.6) as an abstract Cauchy problem, we obtain

d
d—?:TquBu, t>0,

u(0) = up. (9.40)
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Throughout T' C Ty + A is defined by (9.13), and B is given by

[o0]

(Bu)(z) := /a(y)b(xly)U(y)dy, f € D(B), (9.41)

where b satisfies (9.2) and D(B) = D(A) = {u € X,au € X}.
Lemma 9.7. For any u € D(T) we have

/ (Tu + Bu)xdx = —c(u), (9.42)
0
where -
c(u) 2/ dx—!—/)\ x)xdx. (9.43)
0 0

Proof. Let u € D(T). Then u = (I — T)~!f for some u € X and we obtain,
as in (9.26),

o0

(Tol1 = 1) f)(o) = E ) [ 020 (43 - (),

Now
o0 1 o0
/ ( +a(@) r@+e@ / o~ RW)-Q) f(y)dy> wd
0 x
Yy
= / ~R)-QW) f (/ L+a(2) re)+oe )xdos) dy,
0
where
Yy Y
/ 1+a() r@)+Q@) g, / 2L R@+Q@) gy
r(z) dx
0 0
Yy
— yeRW)+QM) _ / SR@+Q) gy
0
Hence

oo

[ or = 1) payeda = [ g)udy
0

0
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oo Y 7
_/e—R(y)—Q(y)f(y) /eR(””)JFQ(E)d:v dy—/f(y)ydyZ
0 0 0
B /eR(;p)+Q(x) /efR(y)*Q(y)f(y)dy dx
0 x
_ /r(:c)((l — 1)1 f)(x)d.
0

Because D(T) C D(Ty) N D(A), it follows that (I —T)~1f € D(Tp) N D(A)
and therefore, using (9.2), we deduce that

oo

/(Tu + Bu)(x)zdx = /(Tou + Au + Bu)(z)zdz
0

Theorem 9.8. Let r and a satisfy (8.3) and (9.7). Then there exists a small-
est substochastic semigroup, say (Gi(t))i>0, generated by an extension K of
T+ B.

Proof. This follows immediately from Theorem 5.17 and Lemma 9.7, as
—c(u) <0forue D(T);. O

To find out whether (G (t))i>0 is honest, we apply the extension tech-
niques of Section 6.3. To this end we have to identify the operator extensions

defined there in the present context.
For w € D(T) := {u € L1 (R4, zdx); ru € AC((0,+00))} we denote

[Tul(z) = (r(z)u(z))s — alz)u(z); (9.44)

thus 7 : D(T) — Ej, where the space E; was defined in (6.3). As in Subsection
8.3.1, we denote by B the operator defined by the expression

o}

[Bul(z) = /a(y)b(xly)U(y)d% (9.45)

x
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on
D(B) ={u € L1(Ry, zdz); [Bui](x) < +o0, [Bu_](z) < 400 a.e.}.

Using these two concepts we can define an operator that can be thought of as
the maximal extension of 7'+ B in X:

[Kul(z) := [Tu)(z) + [Bu](z) (9.46)
with the domain
D(K) ={ue D(T)NnD(B); x — [Ku](z) € L1(Ry, zdx)}.

In a similar way we consider the operator £ extending R(1, A) and defined by

oo

/e_R(y)_Q(y)f(y)dy, (9.47)

T

CR@)+Q()

that is considered on
D(L) ={u € Ef; [Luy](x) < 400, [Lu_](z) < 400 a.e.}.

Because R(1,T) = (I — T)~! is an integral operator with a positive kernel,
Lebesgue’s monotone convergence theorem yields that the operator L, defined
by (6.38), is given by the same integral expressions as both R(1,T) and £ in
(9.47) but on the domain consisting of those measurable functions for which
the respective integral defines a function in X. Therefore, L C £ because Lf
is not required to belong to X. In a similar way, we note that B = B where
B is defined by (6.37). It is not clear at this time whether K is indeed an
extension of K. This is ascertained in the next lemma.

Lemma 9.9.
KcKk.

Proof. Let us recall that, by Theorem 6.20 and (6.45), for every u € D(K)
we have Ku = Tu + Bu = Tu + Bu. Thus it is sufficient to prove that T C 7.
Because for an arbitrary f € F, Lf is defined by Lf = Lf, —Lf_, it is enough
to consider only f > 0. Let f € F, and w = Lf € X . Because L is given by
the same integral expression as £, we obtain that

oo

Q@ T
u(r) = T/e RW=QW) f(y)dy, (9.48)

for a.a. z, where u, being an integrable function, is finite almost everywhere.
But this means that [ “e fW=QW f(y)dy is finite almost everywhere. In
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particular, this implies that for each ¢ > 0 there is z. € (0,¢) such that
0 < u(ze) < +o0o. Because Lebesgue integrability over a given set implies inte-
grability over any measurable subset of it, we see that y — e’R(y)’Q(y)f(y) €
L ([, 00), dy) for any a > 0. But this means that [ e *R®)=QW) f(y)dy is
absolutely continuous and because the same is true for the factor e M(#)+Q(x)
(which is additionally bounded over compact subsets of (0,00)) we see that
ru € AC((0,400)); that is, u € D(7). Thus we can differentiate ru almost
everywhere obtaining 7u =u— f=Tu. O

Corollary 9.10. If ug € D(K), then there is a representation u(x,t) of
Gk (t)ug satisfying (9.1) for almost any x > 0, t > 0.

Proof. In view of Lemma 9.9, the proof is analogous to the proof of the second
part of Theorem 8.3. O

We need a few technical results.

Lemma 9.11. If f € E; is such that Lf € X, then Lf is continuous on R
and f € Li([a, N],zdz) for any 0 < oo < N < 0.

Proof. The proof of continuity (and even absolute continuity) of £f on Ry
follows as in Lemma 9.9. Applying the Fubini-Tonelli theorem to (9.48) with
u = Lf we obtain

o] Yy

00 e~ RW)=QW) [ reR(@)+Q()
r do — dz | dy.
0/( H(z)zde O/Qf(y) y 0/ r(z) A

The function 1(y) = y~te” FW)-QW) foy(r(x))’lxeR(IHQ(I)dx is continuous
and nonnegative, and the only points where it may be zero are at y = 0 or
as y — oo. Hence it is strictly positive on any compact interval [«, N] with
0 < @ < N < 400 and therefore f € Ly([o, N],zdz). O

Lemma 9.12. Let B and L be the extensions introduced above. If, for some
f€D(L)s, both f and BLS belong to Ly (|a, N], xdx), then

N
/(—f(l“) +[BLSfI(x) + [£f](x)) xdz = Nr(N)[LFI(N) — ar(e)[Lf](a)

N a %) N
- / () LF)() / b(aly)xdz | dy + / a() L)) / b(aly)zdz | dy
«a 0 N «a

N N
f/r(x)[ﬁf](x)dxf/x)\(x)a(x)[ﬁf](x)dx. (9.49)
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Proof. Changing the order of integration by the Fubini-Tonelli theorem we
obtain

7 [BL)(x)wde = ]V (7a(y)b(w|y)[ﬁf](y)dy> wdx

[0 (03 x

Y

N oo N
/a ML (y (/ :v|y)33dx) dy+/ (/b x|y) xd:v) dy
]" ya(y)[Lf](y)dy — /N yAW)a(y)[LF](y)dy

N @ [e%) N
/a@mxﬂw(/ﬁuwmm)dy+/a@wwxw(/ﬁuynmjdy
N

a 0 N
N N

:f/ﬁwﬂ@My+/ﬁﬂ+ﬂwﬁwﬂwwy7/ﬁMMMwwﬂ@My

N o]

—/ (W) I[LSf](y (/b x|y) xdx) dy—|—/ W)Ly (/b z|y) J;da:) dy
a N

=—0L+1y— 13— 14+ I, (9.50)

where we used (9.2) to get [Yb(z|ly)zdz = [/b(z|y)zdr — [ b(z|y)zde =
— [ b(x|y)zdz. Next

¥ eRW)+Q(y) by
.72:/ (1+a(y / Z)Qz)f )dz | dy
y

«

z

N
_ /e—R(z)—Q(Z)f(Z) (/yjeR(y)+Q(y)dy) dz
Y
o

«

') N
+ / e~F-Q0) £ 1) ( / yjemy)w(y)dy) s
y

N e}

z

N
/ Q) () ( R()+Q() _ qeR(@)+Q() _ / 6R<y>+@(y>dy> "

(e

+oo

N
n / ~RE)=Q() () <N6R<N>+Q<N> _ e+ Q) _ / R(y)+Q(y dy)d

N
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oo

N
_ / F(2)2ds — aeR(@+Q(@) / e~ REI-Q) f( 1)

«
+oo

L NeRVQN) / ~R(2)Q() f(2)d

N

/e (:)=Q(=) £ () (/ R(y) +Q(y)dy) dz
+00 N

/ R(z)-Q(z </ eR(y)+Q(y)dy) dz
N ot

N
- / f(2)2dz — ar(@)[L](a) + Nr(N)LF(N) / r@)[Cf)(x)dr,  (9.51)

Q

because

N N oo

/r )Lf](x :/ ( R(2)+Q( a:)/ R(z)Q(z)f(Z)dz) dx
N z

_ / e~R=Q0) £ ) ( / 6R<y>+@<y>dy) dz

[}

o] N
n / ~R(E)=Q() () ( / eR(y)+Q(y)dy) e

N «
Combining (9.50) with (9.51) we get (9.49). O

Corollary 9.13. If u € D(K), then

7[Ku](w)xdm = aaog’i]rvnﬂ+oo (—ar a)u(a) — ]Va (/ab z|y) xdx) dy
0 0
+Nr(N)u(N) + 7@ (/Nb x|y) mdx) dy)

—/r(m)u(x)dm—/:E)\(x)a(x)u(a:)dx. (9.52)
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Proof. Let u € D(K). Following Remark 6.21, we can find positive elements
D(K)y 31+ = R(1,K)g+, g+ € X and the corresponding elements fy € F
such that @+ = Lfy. Thus, as in the proof of Theorem 6.22, we obtain Ky =
Lfs — f+ + BLf+. Using Lemma 9.11, we find that fi € Ly([o, N], zdx) for
any 0 < o < N < +00, so that we can use Lemma 9.12 for both fi. Thus,
subtracting and changing L f into u we obtain

N N a
/[Ku](m)xdm = —ar(a)u(a) — /a(y)u(y) /b(m|y)xdx dy + Nr(N)u(N)
« a 0
+/a(y)u(y) /b(az\y)mdw dy—/r(x)u(x)da:—/x)\(a:)a(a:)u(x)dx.
N a o a

Because Ku € X, the left-hand side converges to the integral over [0, o).
Similarly, the last two integrals converge to c¢(u) by (9.42) and Theorem 6.8,
so that (9.52) is proved. O

The first result on honesty of solutions to (8.48) was obtained in [38]. Here
we show how it fits into the general theory.

Theorem 9.14. Let us assume that r satisfies (9.7) and a, in addition to
(8.3), is continuous on (0,7n) for some n > 0. If

lim (T(“T) + a(x)) < 400, (9.53)
z—0t x
then K =T + B and thus (Gk(t))i>0 is honest.

Moreover, if there is Ao > 0 such that \g < A(y) for all y > 0, then
K =T + B, irrespective of (9.53).

Proof. This theorem follows easily from the considerations above as using
condition (9.53) we obtain, by I'Hospital’s rule, lim,_,o+ 1 (y) > 0, where 1
was defined in Lemma 9.11. Thus f € L([0, N], zdz) for any N < 400 and
then in (9.50) we can put o = 0 so that the second and third terms on the
right-hand side of (9.49) will disappear. This gives

00 N

[iKu@yds = tin ( NeV)uN) + [ awutw) | [ belpods | g
0 N 0
—/r(m)u(m)dw—/x)\(x)a(x)u(m)dm, (9.54)
0 0

where the last two terms give ¢(u) so that (6.30) is obviously satisfied.
To prove the second statement we note that c(u) is finite for u € D(K)
by Theorem 6.15. In view of Remark 6.21 we can restrict our considerations



250 9 Fragmentation with Growth and Decay

tou = Lf, f € Fy with w € D(K)4. In particular, the last term in (9.54) is

finite and therefore -

/xa(m)u(w)dw < 400 (9.55)
0

provided A(y) > Ag > for all y. From the Fubini-Tonelli theorem we obtain,
as in the proof of (9.50) in Lemma 9.12,

N N o
JBLi@eds = [ ( / a(y)b(:vly)[Lf](y)dy) wde

N N
- / a(9)[L11(y ( / b(zly) zdx) dy + / WILA() ( / b<x|y>xdx) dy
N «
- / yaly - / AW a()[LF)(w)dy,
whence, by (9.55),
/ BLS)(r)rdz = / a(y)(LF) (v)ydy — / a(y) (L) ()M (w)ydy.
0 0 0

Therefore BLf € X which leads, via (6.58), to f € X. If we now apply (6.41)
we obtain v = Lf € D(A) which yields the stated result. O

Another class of coefficients yielding an honest semigroup is given next.

Theorem 9.15. If for any N < 400 there is My < 400 such that

) _ My, (9.56)

then K =T + B.

Proof. Let us first consider functions v € D(K)4 with support in [0, N] for
some N > 0. For such functions, (9.52) takes the form

7Ku Jedx = algng <—ar(a)u(a) - ]Va(y)u(y) (/a b(x|y)xdm) dy)
0 0

(e

N N
—/r(w)u(x)dm—/:M(m)a(m)u(x)dx. (9.57)
0

0
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Because u € D(K), c(u) is finite and hence ru € Li([0, N]). Writing for
arbitrary g € L1 ([0, N]),

N a
IO Y,
Tt = [ 22 0/ blaly)adz | g(u)dy

«

we have, by ['b(z|y)zde < [b(x|y)zds = y(1 — A(y)) <y,

Tan(9)] < My / 9(a)ldz

so that (la,N)ycocn 18 @ family of linear functionals on Ly([0, N],dz), uni-
formly bounded with respect to «. Let us take go with supp go C [, N] for
some «g > 0. Then

N «
Jim Ty n(go) = lim, Zg; / b(zly)zdz | go(y)dy
«@ 0
N ( ) «
o aly _
- O}E&/T(y) /b(x\y)xdx 9o(y)dy =0,
[e70) 0

by Lebesgue’s dominated convergence theorem, because foab(x\y)xdm tends to
0 and is dominated by y. The set of compactly supported functions is dense in
L1([0, N]), therefore, by the Banach-Steinhaus theorem, we see that I, n(g)
converges for any g € L1 (][0, N], dx). Moreover, denoting the limit by Ing, we
get

Ingl < [In(9 = 90)| + Ingol < Mnllg — goll,

where gy is compactly supported. Because the last term can be made arbi-
trarily small, I g = 0 for any g € L1([0, N], dx).

Returning to (9.57) we see that the above result also yields the existence
of lim, o+ ar(a)u(a) =1 > 0. If [ # 0, then r(a)u(a) > ¢/a for some ¢ > 0
as o — 0, which contradicts ru € L1([0, N],dz). Thus | = 0 and we obtain

7 x)rdr = — 77“(x)u(x)dx - 7$A($)a(x)u(x)dx (9.58)
0 0 0

for any u € D(K)4 with bounded support. By Corollary 6.14, it is enough
to show that (9.58) is valid for arbitrary v € R(1,K)X,. Then let u =
R(1,K)f, f € X,. We take a sequence (fn)nen = (Xnf)Nen, where yu is
the characteristic function of [0, N], which converges to f in X, and define,
through (6.6), elements of D(K) by
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unN = R(].,K)fN = ZOL(BL)an

Due to the definitions of B and L we see that if fy € X vanishes for z > N,
then the same holds for both Bfy and Lfy so that by induction all partial
sums above have support in [0, N]. The series converges monotonically in
X, thus it converges almost everywhere, and therefore uy has a bounded
support. Clearly, because (fn)nyen converges in X, (uy)nyen converges to u
in D(K) and because the functional ¢, given here by the left-hand side of
(9.58), is continuous in the D(K) norm, we see that (9.58) holds for any
u € R(1, K)X . Therefore, K =T + B by Corollary 6.14. O

Remark 9.16. It is a folk tale that shattering is caused by unboundedness
of the fragmentation rate a(z) at = 0 and thus fragmentation rates that
are bounded at the origin should yield honest semigroups, irrespective of the
recession rate r(x). Theorems 9.14 and 9.15 fall a little short of this hypothesis
as they give honesty if either a(z) is bounded and r(x)/z does not approach
zero faster than a(z) (Theorem 9.15), or if a(z) and r(x)/x both have finite
limits at = 0. Hence, these theorems will not decide honesty if a(z) is
bounded but behaves in an irregular way at zero with r(z)/x approaching zero
fast enough for xa(z)/r(x) to be unbounded. Such cases require a different
approach and are addressed later in Theorem 9.26.

9.2.3 Dishonesty

In this subsection we consider only b given by (8.15):

b(zly) =y~ "h(z/y),

and satisfying

1
—/zh(z)ln zdz < +00. (9.59)
0

The balance equation with discrete mass loss (9.2) in this case reads, by (8.16),

zh(z)dz=1— ),

o _

so that A must be constant. Because, by Theorem 9.14, a constant and nonzero
A yields honesty of the semigroup, we can confine our analysis to the case
A = 0. To be able to use the results of the previous subsection, we need some
additional regularity of the coefficients in a neighbourhood of 0 so that, in
addition to (8.3) and (9.7), we assume that there is n > 0 for which the
following properties hold,
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a,r € CH((0,1]) a,” >0 on (0,7 (9.60)

and
;%EGLMQW. (9.61)

Next, denote ¢(x) = r(z)/za(x). By Theorem 9.15, if 1/¢ is bounded at 0,
then the semigroup is honest. Thus, we assume here that

wll)%l+ ¢(x) = 0. (9.62)
Because (9.61) requires a to be unbounded at z = 0, the last two assump-

tions rule out (with some safety margin) honesty of the semigroup. The next
assumption is of a technical nature. We suppose that

@)
2 o)

Note that L > 0. In fact, because for any 0 < § < < n we have ¢(z) —¢(J) =
J5 @' (s)ds, by (9.62) we obtain ¢(z) = [;'¢'(s)ds, and if L < 0, then on some
interval ¢’ would be strictly negative, giving negative ¢.

A more intuitive interpretation of (9.63) is given in the proposition below.

= L < +oo. (9.63)

Proposition 9.17. If the limit (9.63) exists, then

z—0+ I -0+t !

L = sup {z >0; lim ¢=) _ 0} - inf{l >0; lim o) _ —I—oo} . (9.64)

Proof. Inasmuch as

/ /

(2) -] (1) ) 9.5
x x o(x)

we see that if | < L, then ¢(x)/z! is increasing and if | > L, then it is
decreasing, so in both cases lim,_ o+ ¢(x)/z! = p; exists. First let [ < L.
Then 0 < p; < +o00. If we assume that p; > 0, then taking [ < !’ < L we have
o(x) )zt = 'V (x)/at — oo so that py = +oo which is a contradiction.
Hence p; = 0 for all [ < L. Now taking [ > L and denoting for a moment
f(x) = ¢(z)/2!, (9.65) yields f'(z)/f(x) = g(x)/x for some g which satisfies

g(x) < —c < 0 over some interval (0,6). Thus

o(x) _ f(x) = Cexp —/(sgf)dS = C<§>C

x
T

for some constant C. Because ¢ > 0, we see that p; = +oc0 if [ > L. O
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Remark 9.18. The converse of this proposition is not true. In fact, taking
#(z) = z(1 + zsinz™!) we see that clearly ¢(xr) > 0 for 0 < x < 1 with
lim,_,g+ ¢(x) = 0. Moreover, for [ < 1 we have p =0, p; =1 and for [ > 1
by 1 +zsinz~! > 1 — 2 we obtain p; = +00 so that L, as defined by (9.64),
should be 1. However,

1 1

x¢' (x) xsinz™! — cosa~

o(z) 1+ xsing~! ’

so that the limit (9.63) does not exist. There are also functions with L = oo,
for example, ¢(z) = exp(—1/z).

We can then write
olx) = (). (9.66)
Lemma 9.19. Let g be the function defined by (9.66) and gs(z) = x°g(x).

Then for any § > 0
lim gs(x) =0, (9.67)

z—0t

and gs 1s strictly increasing in some interval (0,7).

Proof. Equation (9.67) follows from Proposition 9.17 by ¢(z) /2%~ = 29g(z).
Next, by (9.66) and (9.63), we have

_xg'(z)
R g
so that by
s " — S (e 29 Lo(e) = 29 Lo(z zg'(x)
(@ata)) = (2) + 00 gle) = o gta) (0D 40}, (oo

the function gs(x) is strictly increasing in a neighbourhood of 0. O

Furthermore, we assume that if L = 0, then

9(x)

€ L1([0»7l])7 (9'69)

otherwise we do not impose any additional condition on g.

Theorem 9.20. Let the coefficients a and r of the problem (9.1) satisfy (8.3),
(9.7), (9.60)-(9.63), and, if L =0, (9.69), and let b be of the form (8.15) and
satisfy (9.59). Then the semigroup (G (t))i>0 is not honest.

Proof. Our strategy is to use Theorem 6.23 so that we invoke the operator
extensions introduced through (9.44)—(9.47), and construct u € D(K)4 satis-
fying the assumptions of this theorem. If w is such a function with a bounded
support, then we can write (9.49) as
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Jiul@)eds = tim | ~ar(@)ute) - [ atutw) | [ daly)ads | dy
0 a 0
- / r()ulydy | = lim (~e10(w) = c2a(u) = calw). (9.70)

@

Let us start with assumption (iii) of Theorem 6.23. Assuming for a moment
that ¢, has a finite limit, we look for a function for which

lim (e1,o(u) + ez,q(w)) > 0.
a—0t

To find a good candidate for u let us start with some heuristic considerations.
We see that e o(u) has a finite limit if u(z) behaves as 1/zr(x) close to zero.
On the other hand, using the postulated form (8.15) of b and assuming that
u has support in [0, 1], we have

1 aly

/1 a(y)u(y) / balyyads | dy= [ atwuwy | [ (z)zdz | ay
a 0 a 0
—aga/w?’a (;)u(;) O/h(z)zdz dw.

We see that this expression can be simplified if u(z) equals 1/z2?a(z) on [0, 1].
Then we obtain

w

j a(y)uly) / b(aly)ads | dy = / [ ez | Zdo,
0

«@ 0 «@

and because
w

1 1
1
/ /zh(z)dz ;dw = —/zh(z)lnzdz, (9.71)
0o \0 0

the Fubini—Tonelli theorem and (9.59) give

1

lim b(z|y)zdz | a(y)u(y)dy = — [ zh(z)lnzdz > 0.
I\ /

a—0t

To cater for both requirements we shall define a family of test functions by

3 for 0 <z < n,

zr(z)+0z2a(z
uy(z) = § Y(x) forn <z <&, (9.72)
0 forx > &,
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where 7, ¢ are positive numbers and 1 is a positive function joining (nr(n) +
On%a(n))~! with 0 in a sufficiently regular way. Both 1 and ¢ as well as the
function ¢ are determined later. We have also introduced a constant 6 > 0
to have a better flexibility in the sequel. Let us fix an arbitrary set of these
parameters. Because foab(x\y)xdm — 0 as @ — 0 in a dominated way over
each bounded interval [, £] C (0, +00), we see that

0o « n «@

iim, [ awun(u) | [baly)eds | dy= tim [ o) | [velpods | d

a—0+ a—0t
«a 0 «a 0

Because, on (0, 7], we have
@) = 1 1 1
Unl®) = xr(x) + 0z2a(z)  22a(x) d(x) +0°

using b(z|y) = h(z/y)/y we have

a/ O/b(x|y)a:da: mdy :aé io/zh(z)dz mdr'

By (9.59) and (9.71) we have

T

1 1
1
7/ lnzdz:/ /zh(z)dz —dr < 400,
r
0 0 \0

so that
a/n ) T ) ) a/n . r
- < Z
/ T/zh(z)dz ) adr <3 / T/zh(z)dz dr| —0
0 0 0 0

as a — 0. Finally

n

« 1 r
. 1 1
alln(}Jr/a(y)un(y) /b(w\y)xdx dy = 5/ ;/zh(z)dz dr
0 0

« 0

by (9.62) and the Lebesgue dominated convergence theorem.
Next, by (9.62) and (9.69), we see that

[ @ (1w
/xr(x)—{—@x%(x)dm_O/xgzﬁ(x)—i—ﬂd < oo,

0
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so that c(u,,) exists. Moreover, by (9.60),

n

O/un(x)xdx B / xr(x) —T—dgxza(x) - b/ a:al(x) ¢(x)1—|— de S e

0

as 1/(¢(z) + 0) is bounded. Thus u,, € X. Next, by (9.62), the limits e; o and
€2, can be separated giving

lim (e1,4(u) + €2,4(w)) = lim M

1
1
- = h(z)In zd
a—0t a—0t ¢(O[) +6 0 /Z <Z) fnedz
0

= —% /zh(z) In zdz > 0.

0

In the next step we deal with assumption (ii). Firstly, let us consider the
cut-off of the operator —K:

n

[Ko)a) =~ @ @) +a()f )~ [ Lat)h (j) F(y)dy,

x

for 0 < x < n. By (9.72) we obtain for = € (0,7,

o) \' 1 1
‘<x<¢<x>+e>> T 2@ 0
(x)+1  0¢'(x)

() +0  x(o(x)+0)2

—[r(@)un(@)]" + a(z)uy (x)

(9.73)

We also have

The first integral is easily calculated to be

n 1
1 z\ 1 11 11 11
T 0

z/n

where we used (8.16) with A = 0. Thus
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7 x o(y)
plz) | 6-1 0%z (x) g{h <5) w0 WY
[Kyun)(z) = - +
' 022 | () +0  d(z)((x) + 0)> gl
117 é(a)
+55 | #h()dz = S (@) + Golo), (9.74)

where G, is strictly positive for x > 0. Let us denote

o) = [0 (5) 50 o

and observe that for 0 < « < 7y, where 79 < n, we have I, (z) > I, (z).
Thus, trying to bound away I,(z) from zero we can focus on I, (z) with
arbitrarily small 7. Hence, by (9.62), for any € > 0 we can find 79 such that
1/(6 + ¢(x)) > 1/(0 + ¢) for z € (0,m0]. Now writing ¢(x) = 2F%2%g(z) =
2l gs(x), by Lemma 9.19 we obtain lim,_,o+ gs(2) = 0 and gs is increasing.
Thus, infycz n, 95(¥) = gs(x) and

7o

h (5) y o 2g5(y)dy

e 1] -
> > i .
o(x) ~O+e€ zls=2g5(x) T 0+¢ / h(z)z dz,  (9.79)
x/no
yielding
.. 2% (x) L 1-Ls
lirgérif o) 2 0+61;H—1>62f / h(z dz—e /h(z)z dz

x/no
(9.76)
as the last limit exists (possibly infinite). Let us define H(\) = fol h(2)z'dz.
Using (8.16) with A = 0, we have H(0) = 1 and, by easy calculation, H(1) > 1
Moreover, by z¢ < 2P for0<z<1landa>p, H(]) is a nondecreasing func-
tion and therefore, by the dominated convergence theorem, it is continuous
wherever it is finite (and left-continuous at the right end point of the domain
if it is finite here).
Returning to (9.76) we see that if H(Ls) = oo, then also 2?1, (z)/¢(z) is
unbounded at 0, and if H(Ls) is finite, then, because € is arbitrary,

2
lim inf x In(x)

a—0t ¢(x)

The first two terms of F), in (9.74) have (finite) limits, therefore we can write
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L -1 . 0%x¢’ (x) 221, ()
i F(@) = L, oy~ i ) o T

>1-L+ %(H(L(;) —1).

Obviously, we can assume that H(Ls) < +oo. Denote F(L,0,5) = 1— L +
(H(Ls)—1)/6. f 0 < L < 1, then 1 — L > 0 and because H(L;) # —o0, we
can always make F(L,6,d) positive by taking sufficiently large 6. If L > 1,
then we can take § sufficiently small for Ls > 1. Then H(Ls) > H(1) > 1
and H(Ls) —1 > 0 so that F(L,6,5) > 0 if 0 is sufficiently small. Finally, let
L =1 sothat F(1,0,6) = (H(1—39)—1)/6 and the sign of F is the same as of
H(1—-6)—1.1f H(1) = oo, then either H(A) = co in some neighbourhood of
1, in which case by taking sufficiently small § > 0 we also get H(1 —J) = oo,
or H(A\) < 400 on (—o0, 1), in which case H(1 — §) can be made arbitrarily
large (by the monotonic convergence theorem), and thus larger than 1. On the
other hand, if H(1) < +oo, then it is continuous from the left, and because
H(1) > 1, there is 6 > 0 such that H(1 — ) > 1. Hence, in any case, we can
find 6 > 0 and 6 for which liminf, .o+ F,,(z) > ¢ > 0 for some constant c,
and therefore F; (x) > 0 on some interval (0,71].

Now we prove that [K,u,|(z) > 0 for = close to zero yields u,(z) —
[KCuy|(z) > 0on (0,00). We begin by noting that if 7o < 1, then for z € (0, 7,]
we have up, () = uy, () and [Kp,up,|(z) = [Kp,up, |(x) with

[y o) () = (K, i, | (2) + /a(y)b(xly)um (y)dy. (9.77)

2

From the previous considerations, [K,uy](z) > 0 for € (0,7:] for some
m > 0 and by (9.77), [K,,uy,](z) > 0 on (0,7;], ¢ = 1,2. Hence we have
[Kp un, [(z) > 0 on (0,m1] for some fixed 6. Let us fix this 6, take some
n2 < 11, and consider the function u,, of (9.72) with ¢(z) = (e~ (—z +n2) +
r(n2)un, (n2))/r(z) and & = na + er(ng)uy, (1n2), where uy,(n2) = (n2r(n2) +
On3a(n2))~! and € is still to be chosen. At this moment we require that & < ;.
We have ¥(n2) = uy, (12) and () = 0 so that w,, is a Lipschitz continuous
p -

function on (0, 00). Moreover, (r(z)y(z)) = —e~! on (12, &). Because & < ny,

infy, coce () 2 infp,cocn, 7(x) = 1o and thus ¢(x) < r(n2)un,(n2)/ro on
any interval [n2, £] independently of e. For a € (0, n2] we have

£
i (%) = Pt (@) = 11y () + (Kt ) /a bzl ()dy
m

= “nz(l’) + Kﬂlum -I-/CL x|y um (y)dy
&
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3

+ / a()b(ly) (i, () — ().

72

Next, let ¥ = inf,c(y, 5, up, (z). We have ¢/ () = —1/er(z) — r'(z)¢(z) /r(z)
and because r is a differentiable function on (0, 00) and bounded away from
zero on each compact interval, we have ro < r(z) < r; and |r'(z)] < R on
[2,m], so that sup,c,, ¢ () < —(rie)™! + 7o 2Rr(n2)uy, (n2). Therefore
we can find € for which ¥ > sup,¢(,, ¢ ¢'(2), yielding u,, (y) — ¥(y) > 0 on
12, €] Aty (@) — K )(z) > 0 on (0, o]

Because ¢(z) > 0 on [n2,], putting M = sup,cp,, 1] la(z)x2y(x)|, we
obtain

¢
() = (r(@)y ()" + alz)(x) */a(y)b(fﬂly)w(y)dy

€ 1
1 1 1 M 1 M
2—M/3h<w>dy2—2/zh(z)dz:—2
€ Yy Yy € 7720 € 2

and taking sufficiently small ¢ we make this term nonnegative as well.
It remains to prove (i). All the functions are almost absolutely continuous,
therefore integrating by parts we get

R@+Q@) T
o [0, )y

x

[£((run,) (=) =

R r(y)
- r(x) yggo eR(y)+Q(y) Uy (y) — Unpy ()

o0

/ e RO=QW (1 1 a(y))uy, (y)dy

eR(@)+Q(z)
= —Up, () + [L((1 + a)uy,)](x)

because u,, has bounded support. Thus u,, satisfies assumption (i) and the
theorem is proved. O

9.2.4 Example

In the series of papers [63, 76, 101] the authors have developed a theory of
the fragmentation model (8.48) with power law rates r(z) = z7, a(z) = a*
and b(z|y) given either by (8.15) or by the power law b(z|y) = (v +2)z¥/y* 1,
presenting, in [63, 76], formal arguments to support the claim that for a < 0
and 0 := v —a — 1 > 0 there is a runaway fragmentation, that is, a cascade
of fragmentation events that reduce finite-mass particles to infinite numbers
of zero-mass particles in a finite time. They also stated, [63, p.660]:
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Thus, even though runaway fragmentation occurs for ¢ > 0 and a < 0,
we expect that discrete and continuous mass loss account for all mass
loss and preclude the mass loss normally associated with shattering.

Specified for such coefficients our theory gives the following results. The
function r(z)/x + a(z) = 2771+ 2% is finite at 0 if and only if v — 1 >
0 and a > 0. In this case the semigroup is honest by Theorem 9.14. Also
za(z)/r(x) = 27177 is bounded at 0 if and only if & + 1 — v > 0 and in this
case the semigroup is also honest by Theorem 9.15.

Otherwise we are in the open sector @« < 0 and v > a + 1. In such a
case we have ¢(x) = 772! and assumption (9.62) is satisfied (meaning
that we are in ‘fragmentation regime’, as defined by [76]). Furthermore, we
see that (9.61) is satisfied by @ > 0 and (9.63) is automatically satisfied as
x¢ (x)/Pp(x) = —a—1=L >0 so that (A2) is satisfied. Thus, provided h
satisfies assumptions (9.59) (e.g., if h is given by the power law) then in the
sector a < 0 and 7 > a + 1 there occurs a shattering transformation with
unaccounted mass loss due to (6.12), contrary to the conjecture of [63, 76].
However, by Theorem 9.15, the presence of a sufficiently fast continuous mass
loss for small particles, in the present context modelled by v < «a + 1, can
preclude shattering even in the case a < 0 which, in pure fragmentation
models, yields a shattering fragmentation.

9.2.5 Universality of Shattering

As already discussed in Remark 6.16 and Subsection 7.4.1, for dishonesty of
the semigroup (Gk (t)):>o0, it is enough that Eq. (6.18),

t

|Gk (tuol| = lluo — ¢ / G (s)uods | |
0

does not hold for just one ug € X,. Thus, in principle, it is possible that
shattering occurs for some initial values whereas for others the total mass
evolves according to the built-in decay law (9.5). In Remark 6.16 we introduced
the notion of an honest trajectory as the trajectory {G k (t)uo }+>0 along which
(6.18) holds for this ug € X4 and for all ¢ > 0. Note that the notion of an
honest trajectory for ug ¢ X does not make sense. Thereafter, when talking
about honest trajectories, we always consider trajectories emanating from
nonnegative initial conditions. With this convention (G (t)):>o is honest if
and only if its every trajectory is honest.
The main result of this subsection is the following theorem, [42].

Theorem 9.21. Let us assume that the coefficients satisfy (8.3) and (9.7) and
let (Gk(t))t>0 be the semigroup generated by the extension of (I + B, D(T))
according to Theorem 9.8. If there is ug € X, such that the trajectory
{Gk (t)uo}t>0 is not honest, then no trajectory of (Gk(t))i>o is honest.
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Proof. Trajectory {G g (t)uo}i>0 with ug € X is dishonest if and only if the
defect function n; defined by (6.20) is nonzero which, in turn, by Proposition
6.10 (ii), is equivalent to the existence of a nonzero functional 8, defined by
(6.32). The parameter A is not important so we fix A = 1 and drop it from
the notation in the sequel. On the other hand, by (6.33), 5 satisfies

(BR(1,T))"5 = 3.

To find an explicit expression for (BR(1,T))* first we choose the duality
pairing between X and X* to be

<o, f >= /qf) x)xdr, feX,ge X,

so that X* can be identified with L. (Ry) and thus the functional § can
be represented by a suitable function 0 < ((z) € Lo (R;). Hence, let us
take ¢ € X7, f € X, and use the above duality pairing to obtain, by the
Fubini—Tonelli theorem,

<¢,BR(1,T)f>
7 b R)+QW) |

:/¢(x) / aly)blaly)e T /efR(z)fQ(z)f(z)dz dy | xdx
0 x

(y)
Yy
7 Rp+Quw) [ T
:/ —a(y)e / —R(2) Q(z)f /b z|y)o(z)xd dy
7(y)
0 Y
T [ e-R(=-Q() / aly)eRW)+Qw) /
= b(x z)xdx | d 2)zdz
0/ — [\ [rewetwea fav )

that, extended by linearity to X*, yields

e~ R(2)-Q(2)

[(BR(1,T))*¢|(z) = / a(y)

z
0

eRW)+Q(y)
r(y)

[ salpota)zds | dy
0

From (6.33) we see that 8 must satisfy

B(z) =

e~ R(2)-Q(2) / aly)eRH+RW)

z r(y)

y

[salps@ads |y, ©73)
0

which means, in particular, that it is a continuous function for z > 0. Let us
assume that G(c) = 0 for some ¢ > 0. From nonnegativity of all terms and
strict positivity of e #(*)=Q() /2 we find that B(z) = 0 for all 0 < z < ¢ and
thus
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Y

[ saliajeds =0
0
for all y < ¢. Thus, (9.78) becomes

| e RE-QR) 7 [ a(y)eR®
Ple) = z / r(y)

QW) |
/ bely)B(x)zde | dy.  (9.79)
(& (&
Due to the structure of the Volterra equation, we can consider it on intervals
[c,¢] with 0 < ¢ < & < co. We can change the order of integration back and
rewrite this equation as

ﬁ(Z)—/Zﬂ(x) /Za(x,y,Z)dy dr,

where

e_R(Z)_Q(z) a(y)eR(y)"l‘Q(y)
z r(y)

Thanks to the assumptions, the exponential terms and 1/r are bounded for

0<c<y<z<é< oo Thus we can write

alz,y,z) =x b(x|y).

5 <K [ 5a) | [ zatwbtalyay | de (9.80)
for some constant K. Let us consider f(z) = xf;a(y)b(:c\y)dy. By (8.5), we
have for any ¢’ > 0

a(y) b(zly)zdz | dy < | a(y)y(l — A(y))dy < +oo0,
o] J

c’ c’
because a is locally integrable. Changing the order of integration in the first
integral, we obtain

’

/éa(y) /yb(ac|y)xd:c dy = /Cx /éb(x|y)a(y)dy da
c! 0 0 o
+/Cf” /Cb(wly)a(y)dy dz,

so that, by positivity of both terms, f(x) is integrable on [¢/,¢] for any
0 < ¢ < é (in particular, on [c,¢]). Thus we can apply Gronwall’s lemma
(which, in the version proved in [153, Lemma D.2] can be easily adapted to
the current context) to (9.80), to ascertain that S(z) = 0 for all x, contrary
to the assumption that 3 is a nonzero functional. O
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Contrary to the birth-and-death case, discussed in Subsection 7.4.1, for the
fragmentation equations we do not have necessary and sufficient conditions
for dishonesty and hence the result of Theorem 9.21 is conditional. However,
we identified a class of dishonest fragmentation models with mass loss in
Subsection 9.2.3. We can thus strengthen Theorem 9.20 as follows.

Theorem 9.22. Let the coefficients a and r of the problem (9.1) satisfy (8.3),
(9.7), (9.60)-(9.63), and, if L =0, (9.69), and let b be of the form (8.15) and
satisfy (9.59). Then each trajectory {Gg (t)uo >0, wo € X4 is dishonest.

Remark 9.23. Because the operator (BR(1,T))* for the pure fragmentation
model is also of the Volterra type (see (8.55)) the proof of Theorem 9.21 is
also valid. Thus, also for pure fragmentation the existence of a single dishon-
est trajectory implies dishonesty of all trajectories (emanating from positive
initial conditions). In particular, condition (8.56) is not satisfied if and only
if all trajectories are dishonest.

9.2.6 Fragmentation Semigroup in the Finite Mass Space
L4([0, N], xzdx).

An important role in many applications is played by the fragmentation model
with an upper bound for particle mass, that is, with « € [0, N], N < co. The
streaming equation in this setting was analysed in Subsection 9.2.1, where we
introduced the notation (9.33),

XN,k = Ll([O,N],l‘kdl‘),

with the norm indicated by || - ||vx; X denote the corresponding spaces with
N = oo (see (9.10)). In this section we are interested in k£ = 1 and we therefore
drop the index k from the notation.

For the coefficients r and a we adopt the standard assumptions (9.7) and
(8.3), respectively, and b is assumed to satisfy (9.2).

By Theorem 9.5 and Corollary 9.6 we see that

GTN (t) = GT(t)‘XN7

where (G (t)):>0 is the semigroup generated by the restriction of the stream-
ing operator to Xy and (Gr(t))i>o is the semigroup generated by (T, D(T'))
on X according to Theorem 9.3. For an operator S we denote by Sy its
restriction to X . Thus, for example,

N

(Byu)(z) = / a(y)b(xly)u(y)dy

T

with D(BN) = D(TN)
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In the proof of Theorem 9.15 we used the fact that the set of functions
from X with support in a fixed interval [0, N] is invariant under the resolvent
R(\, K). We further exploit this observation here.

As in Lemma 9.7, we see that for any v € D(Tn)+

N N N
(Tnu+ Byu)xdx = — [ r(z)u(z)dr — | xX(v)u(z)de, (9.81)
[ [romee]

which immediately yields:

Corollary 9.24. There is an extension Ky of T + By generating a sub-
stochastic semigroup (G (t))i>0 on Xn with the resolvent of Ky given by

RO\ Ky f = i:jOR(A,TN)[BNR(A,TN)}" £ fEXn, A>0.  (9.82)

Next we relate this semigroup to (G (t))¢>0-
Proposition 9.25. For each N > 0:

(a) Xn is invariant under the semigroup (Gk(t))i>o0;
(b) (Gklxy (t)i>0 is a Co-semigroup generated by the operator (Ky, D(I?N)),
where B
D(Ky) = D(K) N Xy;

(¢c) Ky = Kn and consequently

(Gklxy()z0 = (G, (t)i=0 = (G (t))e>0.

Proof. As in the proof of Theorem 9.15, we see that Xy is invariant under
R(\, K). Now using the exponential formula for the semigroup, Eq. (3.22),
and the fact that convergence in X implies convergence of a subsequence al-
most everywhere, we see that X is also invariant under (Gk(t)):>0. Hence,
by Proposition 3.12, (Gk|xy(t))t>0 is a Co-semigroup generated by the re-
striction Ky of K to D(K) N Xy. To prove the final statement, we observe
that for f € Xy we have BR(A\,T)f = ByR(\, Tn)f and thus, for such f,

ROLKn)f = ROK)f = 5 ROVT)BROD))" f

= 3 ROLTN) BN ROL T f = RO\ Ky).

n=0
Consequently, the semigroups generated by K ~ and Ky coincide. 0O

We use this observation to strengthen Theorems 9.14 and 9.15, as an-
nounced in Remark 9.16.
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Theorem 9.26. If for any N < 400 there is Cn such that

Cn =esssup a(zr) < 400,
z€[0,N]

then the semigroup (Gk (t))i>0 is honest.

Proof. Let us take 0 < ug € C§°(R4) so that suppug C [a, N] for some
0 < a < N < oco. Because (rug)’ has support in [a, N] and is integrable there,
we see that ug € D(T) C D(K); see (9.22). Let us consider u(t) = Gk (t)uo.
By Proposition 9.25 we have

u(t) = GK(t)uo = GKN (t)uo. (983)

For the restricted operator By we obtain

N N
| Brully = / / a(y)b(ly)u(y)dy | zde
0N : Yy N
- / a(y)uly) / wb(ely)de | dy = / a(y)u(w)y(1 — A(w))dy
0 0 0
< Onllulln,

where we used 0 < A(y) < 1. Hence, By is bounded in Xy and Ky =
Tn + By, defined on D(Tn), generates (G, (t))i>0 by Proposition 9.25.

Let us return to u(t) = Gk, (t)ugp € D(K). As in Theorem 8.3 and
Corollary 9.10, there is a representative of w such that for almost every
t>0,0 <z < N we have

N
(e, t) = O,(r(w)ula, 1) ~ ala)u(e.t) + [ alwaly)u(y, Ody. (980

x

Moreover, because the domain of K is the same as that of T as the pertur-
bation By is bounded, and the domain of Ty is the same as the domain of the
differential operator Tp n (see (9.34)) the boundedness of @ implies that each
term of the above equation is integrable with respect to xdx. In particular,
for arbitrary v € D(K), integrating by parts

N N
/ar(r(as)u(x))xd:c =r(N)u(N) — lim zr(z)u(z) — lim r(x)u(z)de.
0

z—07t z—0t
z

The integral tends to the finite limit fUN r(z)u(z)dz by (9.81) and Theorem
6.8, so that lim, g+ 27 (2)u(z) exists. Because r(x)u(z) is integrable, we must
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have liminf, . xr(z)u(z) = 0, otherwise r(z)u(x) > cz = close to zero which
contradicts the integrability. Thus, for a sequence (2, )nen converging to 0,

lim z,7r(zp)u(z,) =0,

n—oo

and, because the limit exists, we have

N N
/&E ))xdr = —/r(x)u(m)dx,
0 0

where we used u(N) = 0 from the definition (9.91) of D(Ty).
Thus, integrating (9.84) with respect to xdz, we obtain for a.a. t > 0,

p N N N

—/uxtxdz— / /a u(z, t)xdr

dt
0 0 0
N /N N N

+/ /a(y)b(aj|y) (y,t)dy | xdx = / u(z, t)dr — /x)\ dx.
0 \z 0 0

Hence, (Gxy (t))t>0, and therefore (G g (t))¢>0, are honest along the trajectory
originating from ug but then, by Theorem 9.21, (Gk (t))¢>0 is honest. O

9.2.7 Fragmentation Semigroup in the Space L; (R, dz)

Fragmentation of particles should not alter the mass of the total ensemble,
therefore the natural space in which the particle mass distribution function
u should live is X = L1(Ry, xzdx) and, in fact, the analysis of fragmentation
processes in this space has proved very fruitful. However, quite often it is also
important to know how fast the total number of particles grows; that is, by
(8.1) and (9.9), we are interested in the behaviour of

- / w(z, t)dz. (9.85)
0

Hence, for each t > 0, u should belong to the space
XO = Ll(R+, d.]?) (986)

The need to estimate N (¢) arises for instance when one considers fragmentation—
coagulation processes, where the nonlinear coagulation term behaves well in
X but not in the original space X (see, e.g., [125, 109, 110, 46]).

It is obvious that, in general, the solution u of (8.2) or (9.1) will not yield
a finite number of particles at any time ¢ > 0 even if uy € X, because for
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some particle number distribution function b(x|y), parent particles split into
an infinite number of daughter particles, for example, if ¥ < 1 in the power
law (8.14) case or if h is not integrable close to O for the homogeneous b
(see (8.17)). However, it is also possible that for large fragmentation rates a a
faster than exponential, or even infinite, growth of the number of particles can
occur. Thus we introduce some additional assumptions that allow for some
control of this growth.
We assume that r satisfies the standard assumptions (9.7). Moreover

0<a(x)<Px+Q, x € )0, 00), (9.87)

for some P, Q € Ry, b satisfies (9.2) and furthermore

supn(y) = sup/b(x|y)dx =M < . (9.88)

y>0 y>0
0

In particular assumption (9.87) ensures, by Theorem 9.26, that the semigroup
(Gk(t))t>0 is honest.
Let us recall the notation

XN,k = Ll([O,N],Z‘kd$),

with the norm |[|-|| v x; as before by X}, we denote the corresponding spaces with
N = oco. Because from now on we are working only with £ = 0, 1, to shorten
notation and avoid confusion with the terminology of the previous sections, we
drop subscript 1 from the notation, but keep the index 0 to indicate the spaces
and operators related to the finite particle number context, for example, the
space Xy 1 is denoted by X, but the notation for X ¢ remains unchanged.

We are interested in solutions to the fragmentation problem that yield
both a finite mass and a finite number of particles at any time ¢ > 0. It is
then reasonable to introduce the space

Y i=XoNX =Li(Ry, (1 +2)dz),

with the norm

£y = N1+ 11 fllo-

It is clear that Y is continuously embedded in both X and X,. We consider
parts of operators in Y; see (2.12).
Furthermore, let us define the space

Zn ={uec C"(Ry), suppu C In},

of Lipschitz continuous functions with support in

1
IN: |:N7N:| .
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Let u € Zy. Because r is absolutely continuous on I, v’ is integrable, and
hence (ru)’ is integrable on Iy and therefore, being 0 outside I, it is in X.
Hence Zy C D(Kn) C D(K). The set

Z = G ZN
N=1

is dense in Y. Moreover, it is easy to check that the positive cone Zy 4 of Zn
is generating; that is, any element of Zy can be represented as a difference of
two positive elements of Zx and that the same is true for Z.

Theorem 9.27. For each t > 0, let Gk v (t) := Gk (t)|y be the restriction of
the semigroup (Gi(t))i>o0 to Y. Then (Gk v (t))i>o0 s a Co-semigroup on'Y
satisfying

|Gy (t)uolly < Le@MIDyglly, t>0, upe, (9.89)
where L = max{1, P/Q} if Q@ >0 and
1Gry ®)uolly < (P(M + 1)t + 1)|uolly, (9.90)

if Q = 0.
Moreover, (Gk y (t))i>0 is generated by the part Ky of K inY.

Proof. Let ug € Zy for some N < co. As in Theorem 9.26, we have
u(t) = Gk (t)uo = Giy (t)uo,

with the generator of (Gk (t))i>0 given by (I'y + By, D(Tn)).

Consider the same problem on Yy := Xy N Xy, with the norm denoted
by || - |lv.n; Yo is densely embedded in X . We indicate the restrictions of
operators from Y to Y by the subscript -y, ;. Because the streaming operators
Ty and Ty coincide on Y, Ty, n is given by the same expression (9.44) as
Ty with

D(Ty,n) = {u € Yn; ru € AC((0,N)), (ru) € Yy, and u(N) = 0}, (9.91)

as in Subsection 9.2.1. Note that the condition coming from the operator A
is void because a is bounded on each [0, N] by (9.87). Then, for v > 0,

Byl = [ { [ awibialnutody | 1+ 2)da
— [ atwutw) [ +apiatyde|dy = [ au)o - Aw) +nt)dy
< sup WOWEY,
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where we used 0 < A(y) < 1; hence By,n is bounded by (9.87) and (9.88).
Thus
(Ky,n,D(Ky,n)) == (Ty,n + By,n, D(Ty,n))

generates a semigroup (Gy,n(t))i>0 on Yy. Because Ky, y is a restriction of
Ky, the resolvent of Ky, y is a restriction of the resolvent of K and therefore,
by the exponential formula (3.22) and continuity of the embedding Yy C Xy,
the semigroup (Gy,n(t))t>0 is the restriction of (Ggy (t))i>0 to Y.

Let us return to u(t) = Gk (t)up. As in Theorem 8.3 and Corollary 9.10,
there is a representative of u such that for a.e. t > 0,0 < z < N we have

N
Opu(x,t) = Oz (r(z)u(z, 1)) — a(x)u(w,t) + /a(y)b(wly)u(y,t)dy

x

Moreover, because the domain of Ky, is the same as that of Ty x as the
perturbation By,y is bounded, and the domain of the former is the same as
that of the differential operator (by boundedness of a) the above equation,
for almost any fixed ¢ > 0, can be integrated term by term with respect to dx
giving

z—0

i/u(m,t)da: =r(N)u(N,t) — lim r(z)u(z,t)

N

where we used u(N) = 0, coming from (9.91), and r(z)u(z,t) > 0 for all z > 0.
Now, taking into account that w(-,t) is also a solution in X with support
in [0, N], we have

Gl < [ aw)nly) - Duty.t)dy
0
SM+1) | P [ yuly,t)dy +Q [ uly,t)dy

< P(M 4 1)lJuoll + QM + 1) [u(t)]|o
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and, by Gronwall’s inequality in the differential form, [153, Lemma D.3],
P P
lu®llo < <|uo|o n QU0|> QD L] (9.92)

provided @ > 0. If Q = 0, then by direct integration
[u(®)llo < P(M + 1)t[uol| + [luollo- (9.93)
Assume for the time being that @ > 0. Because the function

P P
f(t) = — — 767Q(1\/f~‘r1)t _|_ efQ(M+1)t
Q@ Q

is monotonic and f(0) = 1, we obtain

<g (eQ(M+1)t _ 1) n 1> < LeQUMTHDE,

where L = max{1l, P/Q}, and hence we can write

oo

P
sty < @V [ (@) + o (Q (cmsn_1) 4 1)
0

< LeQ@MHFD 01y (9.94)

Extending this inequality from the positive cone of Z to Y we see that the
restrictions (Gg (t)|y)i>0 of (Gr(t))i>0 to Y form a semigroup of bounded
operators that is exponentially bounded as t — oco. To show that (Gx (t)|y)e>0
is a Cp-semigroup on Y, it is enough to observe that by the previous part of
the proof,

t£%1+ G (t)|yuo = uo,

in both X and Xy if ug is of bounded support, and extend this convergence
to Y by the Banach—Steinhaus theorem using local uniform boundedness in ¢
of the operators G (t)|y and the density of Z.

If @ =0, then by (9.93) we obtain

u(z, t)|ly < P(M +1)t[luo || +luollo + [[uoll < (P(M +1)t+1)[Jug|ly. (9.95)

Finally, the last statement follows from Proposition 3.12. O

9.3 Fragmentation with Growth

In Subsection 9.1.1 we introduced two fragmentation models with growth.
Model (9.4), describing dynamics of phytoplankton aggregates, differs from
(9.96) only by the death term —du. In applications the death coefficient is
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bounded and thus this term introduces a bounded perturbation which influ-
ences neither well-posedness nor honesty of the semigroup and introduces only
cosmetic changes in the formulae. Such a full model was considered in [41].
Here we confine ourselves to its simpler version (9.3); that is, we analyse the
Cauchy problem:

o0

Opu(x,t) = =0z [r(z)u(z,t)] — alr)u(z,t) + /a(y)b(ﬂcly)U(y,t)dy

u(z,0) = ug(x). (9.96)

The interpretation of u,b, and a is the same as in the pure fragmentation
model, whereas r this time is the growth rate of the clusters. In particular,
b satisfies (8.5). As before, we assume that r € AC((0,00)) and additionally
satisfies

0<r(x) <7Tm, x>0, (9.97)

for some constant 7 > 0. From (9.97) we have r(0) = 0; we also assume that
7'(0) > 0. (9.98)

We consider b, given by (8.15), to be

on=1n(3)

Multiplying (9.96) by = and integrating we obtain the formal equation gov-
erning the evolution of the total mass of the clusters:

Q.‘Q‘

o0 o0

; /u(x,t)xdx = /r(m)u(x,t)dx, (9.99)
0 0

where we used (8.5) and integration by parts. This formula indicates that this
problem does not fit directly into the framework of substochastic semigroups
as the semigroup, if it exists, cannot be expected to be contractive. However,
by a careful analysis of the streaming part of (9.96), we show that it is pos-
sible to transform this problem into a dissipative one. Hence we are able to
introduce and analyse suitable notions of honesty and dishonesty.

9.3.1 The Streaming Semigroup

As with the fragmentation with mass loss, the existence of the streaming
semigroup is not completely obvious. Let us consider the Cauchy problem

ou(z,t) = =0 [r(x)u(z, t)] — a(x)u(z,t), x>0,t>0,
u(x,0) = ug(x). (9.100)
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Direct estimates of the resolvent of the right-hand side of the equation in
(9.100) are not easy, due to possible singularities of the fragmentation rate a
and degeneracy of r at x = 0. Thus, we simplify the problem even further and
as a first step we deal with the Cauchy problem

Opu(z,t) = =0z [r(z)u(z, t)], x> 0,t>0,
u(z,0) = ug(x). (9.101)

Define the operator
[Toul(z) = =(r(z)u(z))s

on the domain
D(Ty) ={ue X; ru € AC(R;) and (ru), € X}.

Denoting by R a fixed antiderivative of 1/r, say, R(z) = [;" ds/r(s), we see,
due to 0 < r(x) < 7z for x > 0 and (9.98), that

lim R(z) = 400, lim R(z) = —o0; (9.102)

T— 00 z—0

thus R is globally invertible on R. Hence, defining Y (t,z) := R~ (R(z) —
t), x>0,0<t< oo, wecan prove as in Theorem 9.4 that

r(Y(t,z))uo(Y (¢, x))
r(z)

is a Cy-semigroup generated by (Tp, D(Tp)). In particular, we have

(G, (D)o ())(2) =

|Gz, ()uo| S/r(Y(t,ar:)r)(qf)(xf(t,gc))
0

o = [ oY (4,2 < ],

for ug € X, where we used the change of variables z = Y (¢,z) so that
dz/r(z) = dz/r(z) and Y (¢,0) = 0,Y (t,00) = oo by (9.102). The final esti-
mate follows from the fact that x(t) = Y (—t, z) is the solution to the Cauchy
problem

dx
i r(z), z(0) ==z
so that

and, by Gronwall’s lemma and (9.97),
Y (—t,2) < ze'™.

In particular, by the Hille-Yosida theorem, we obtain for f € X and A\ > 7,
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1
A—7T
Using the above we can prove the following result for the semigroup solving
(9.100).
Proposition 9.28. The operator T defined by the formal expression

[Tul(z) = =(r(x)u(z))e — a(z)u(z)

[R(X,To) fI| < £l (9-103)

on the domain
D(T)={ue X,au e X,ru € AC((0,00)) and (ru), € X},
generates a positive semigroup, say (Gr(t))i>o, satisfying for any up € X,
G (t)uoll < e luoll, (9.104)
where T is defined in (9.97).
Proof. Let us consider the resolvent equation of (9.100),
(r(@)u(z))s + a(z)u(z) + Au(z) = f(z).

Solving the above equation we see that a good candidate for the resolvent is

x

—AR(z)—Q(x
e D0 / PRO+QW) £y dy,
0

r(zx)

where Q(z) is a fixed antiderivative of a(z)/r(z). Direct integration gives

x

—AR(z)—Q(x)
e /e)\R(y)-‘rQ(y)U(y)‘dy zdr <

1
=7

IRV < / 17,
0

r(z)

where we used the fact that e~?(*) is nonincreasing, and (9.103). Furthermore,
we have

a2) ~ar@)-Q@) — __A_-ar@-Qw) _ 4 ar@-e@ (9105
r(zx) r(x) dx
so that
T [ AROHRW) T pg(z)eMR@)-Q)
aR(\ §/ / dx d
laR(A) ]l " ) |f () lydy
Y
ARWTRW) T
1+#/6 MO=C@ dg | y| f(y)|dy
Y

IN

IN
\8 0\8 ©

dz | ylf(y)|dy

) ~€AR<y>+Q<y>7xeAR<z>Q<m>
+r

r(z)

Yy

0
<@+ =PI
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where we again used monotonicity of e~ @) inverted estimate (9.97): 1/7 <
x/r(z), and (9.103).
Next we observe that for f € X,

r(2)u(z) = e @) —Q@) / ARWHRW) £y dy.
0
and both e (@) —=Q(@) and the integral (as a function of its upper limit) are
absolutely continuous and bounded over any fixed interval [, 3] C (0, 00).

Therefore it follows that the product is absolutely continuous on [a, 8] and
therefore ru is absolutely continuous. Moreover,

o~ AR(2)-Q(z) |

MY+ RY) — f(z
o O/ QW f(y)dy — f(2)

= (A +a(@))u(r) - f(z) € X,

—(r(@)u(@))s = (A +a(z))

so that R(A\)X C D(T). Because clearly (A —T)D(T) C X we have (A —
T)R(N)f = f for any f € X. To show that R()) is the resolvent for T it is
enough to show that A\I —T is injective on D(T'). We see that the only solution
(up to a multiplicative constant) to

(r(z)u(z))e + a(z)u(z) + Iu(z) = 0,

isuy(z) = e MH@)=Q@) /i (g). First, we observe that because e~?(®) is positive
and decreasing, e~ ?*) > ¢ > 0 in some interval [0, ]. Moreover, because
r(x) < 7z, we have for x < 1,

x 1

e M@ = exp —)\/ﬁ = exp /\/ﬁ > exp —ilnx = M7,
r(s) r(s) r
1

x

Therefore, for a < 1,

«

T e—AR(2)-Q(x) " o—AR(2)
[l :/eixdx > c/eixdx > g/af)‘/;dx = 00,
r(x) r(x)

0 0 0

<

(9.106)
as A > 7. Hence, \I — T is injective for A > b (on its maximal domain) and
R(\) = R(M\T). The resolvent is a positive operator hence, by the Hille—
Yosida theorem, (T, D(T)) generates a positive semigroup satisfying (9.104).
O

From this proposition it follows that the operator

(T,D(T)) = (T — 71, D(T)), (9.107)
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generates a positive semigroup of contractions given by
G7(tu = e " Gr(t)u. (9.108)

This shows that to prove the existence of a semigroup solving (9.96), charac-
terise its generator, and thus analyse the dynamics of the process, we can use
the substochastic semigroup theory developed in Chapters 5 and 6.

9.3.2 Back to the Growth-fragmentation Equation
Let us return to the problem (9.96) and use the results developed in the
previous subsection. Define the operator B by the expression

oo

Bu@) = [ aty)blely)uty.ndy
on the domain D(T). Firstly, as in Lemma 9.7, we obtain for any u € D(T)

(Tu + Bu)zds = — /(?x —r(x))u(z)dr =: C(u), (9.109)
0

which, due to (9.97), shows that the assumptions of Corollary 5.17 are satis-
fied. Hence there is an extension K of the operator T + B that generates a
substochastic semigroup (G'z(t))¢>0. The relation of (G (t))i>0 to the prob-
lem (9.96) is given in the next proposition.

Proposition 9.29. The exztension K of T + B given by (K, D(K)) = (K +

7I,D(K)) generates a positive semigroup (G (t Neso = (e"G(t))i>0. The
generator K is characterised by

M —K) f = S (M =T) B - T)"]"f (9.110)

for fe X and A > 7.

Proof. The operator T was constructed from T by subtracting the bounded
operator 7. Let us consider the approximating semigroups (Gs(t))i>0, gen-
erated by (T'—71+sK,D(T)), 0 < s < 1, as in the proof of Theorem 5.2. By
Eq. (5.5) we have

lim G.(0)f = Gr()f (9.111)
in X, uniformly in ¢ on bounded intervals. Define semigroups (G%(t))i>0 =
(e;th(t))Do generated by T + sB. As multiplication by e does not af-
fect convergence in (9.111) we see that (G%(t));>o converges strongly to the

semigroup (Sg(t))i>0 = (€™ G (t))i>0 which is generated by K = K + 71
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and which is an extension of 7'+ B defined on the same domain as K ,
D(K) = D(K).

Formula (9.110) follows immediately from (6.6) by noting that because
M—K=(A-7)I—K we have (Al — K)~! = (VI — K)~! for A > ¥ and the
same holds for the resolvent of 7. O

Formula (9.109) for T' + B takes the form
/ (Tu + Bu)xdr = / (2)u(x)dx =: C(u). (9.112)
0 0

Note that (9.112) is of the form of (6.7) with the exception that the right-hand
side in (9.112) is positive, contrary to (6.7). We already have the existence
of the semigroup, therefore we can use the definition of honesty (6.9) in this
case, as explained in Remark 6.5. Firstly, note that because

o0

Cu) = C(u) + ?/ u(x)zdr

0

and C extends onto D(K) = D(K) by Theorem 6.8, C also extends onto
D(K). Hence, we say that (Gg(t));>0 is honest if for any 0 <ue D(K) we
have

%IIGK(t)uOHX = C (Gk(t)ug) - (9.113)

Thus, all results characterising honesty and dishonesty can be applied to
(Gk (t))i>0 with —c(u) replaced by C'(u). Because the generator K of (Gk (t))i>0
differs from the generator K of the substochastic semigroup by a bounded
operator 71 we see, in particular, that (Gg(t));>0 is honest if and only if
K =T + B which in turn is equivalent to

/Kuwdm > C(u), (9.114)

for any u € R(\, K)X, with A > b.

The extensions of the operators with which we are working are defined
similarly to (9.44)—(9.47). Hence, for u € D(T) := {u € L1(Ry,zdz); ru €
AC((0,00))} we denote

[Tul(z) = =(r(z)u(z))s — alz)u(z); (9.115)

thus 7 : D(7) — Ey. The operators B and K are defined by (9.45) and (9.46),
respectively. For the extension of the resolvent of T' we need more flexibility,
so we consider the operators £ defined, for A > 7, by the expression
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x

/e/\R(y)JrQ(y)f(y)dy (9.116)
0

e AR(2)-Q(x)

L =
£3fe) = s
that are considered on D(Ly) = {f € E; & — [Lxf](z) is finite a.e.}.

Denoting for a moment by 7 and £, the analogous extension of the oper-
ator T and its resolvent R(A,T), respectively, we see that Ly_7 = Lx, A > T
and hence we can repeat the proof of Lemma 9.9 to show that

KcT+B.
However, as both K and T differ from K and T, respectively, by the operator
of multiplication by 7, we obtain immediately that

KcT+B, (9.117)

and therefore, as in Corollary 9.10, we see that if ug € D(K), then there is a
representation u(-,t) of G i (t)ug that satisfies (9.96) for almost allt > 0,z > 0.
Also, as in Lemma 9.9, we see that any function v € D(G) is continuous on
(0, 00).

The following result can be proved as Lemma 9.12.

Lemma 9.30. Let B and L) be the extensions introduced above. If, for some
g € D(L)4, both g and BLyg belong to Lyi([a, N, zdzx), where 0 < a < N <
oo, then

N
/ (—g(z) + [BLrg)(x) + A[Lrg) () zdi = ar(a) [Lrg)() — Nr(N)[Lrg)()

a
N

- / a(y)[£rg](v) / b(aly)eds | dy
0

e

oo N N
+/a(y)[£/\g](y) /b(x\y)xdx dy—l—/r(x)[E)\g](x)dx. (9.118)
N «a a

Note that although the calculations leading to (9.118) are the same as those in
Lemma 9.12, Eq. (9.118) is substantially different from (9.49) as the signs at
ar(a)[Lag](a) and Nr(N)[Lrg](N) are different. This has very serious conse-
quences: the proof of Theorem 9.14 is based on positivity of Nr(N)[Lrg](N);
see Eq. (9.54). However, better regularity assumptions on r allow a refine-
ment of Corollary 9.13 that will prove sufficient for the analysis of honesty
and dishonesty of (Gk (t))i>o0-

Theorem 9.31. If u € D(K), then there are sequences o — 07 and Ny, —
oo as k — oo such that
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7Ku Yrdx = kli)rgo — ]/Vka(y)u(y) 7b(z|y)xd:c dy
0 ag 0
+ 7a(y)u(y) I/ka(x|y)xdx dy | + 7T(m)u(w)d$ (9.119)
Ni k 0

Proof. In the same way as in Lemma 9.11, we see that if g € E; is such
that £ag € X, then g € Ly (Jo, N], zdx) for any 0 < @ < N < oo. Using
the construction of Remark 6.21, as in Lemma 9.11, we observe that if u =
RN\ K)f, f € X4 thereis g € Ef 4 such that u = L,g and

Ku=M\g— g+ BLxg,

and, as g € Ly([o, N],zdz), we have BLyg € Li([a, N],zdzx). Hence, by
Lemma 9.30,

k—oo

/ [Ku](z)xdx = hm agr(ag)u(ag) — Ngr(Ng)u(Ng)
0

—7ka(y)U(y) 7kb(w|y)xdﬂc dy + 7@(@/)%6(1/) 7kb(fﬂ|y)wd$ dy
ak 0 Ny k

oo

+ / r(z)u(z)de

0

for any sequences (o )ren and (Ni)gen converging to 0 and oo, respectively.

Because u € Li(R,,zdx) N C(0,00), we have liminf, . 2?|u(z)] = 0.
Thus, similarly to Theorem 9.26, there is a sequence (Ng)ken converging to
oo such that limy_,o N?|u(Ny)| = 0. Similarly, we obtain a sequence (a)ken
that converges to 0 as k — oo such that limg_oo a2|u(ay)| = 0. Because
r(z) < 7z for x > 0, we obtain the thesis. O

Due to assumptions (9.97) and (9.98) the assumptions of Theorems 9.14
and 9.15 coalesce and for the honesty we have a single result.

Theorem 9.32. If a € C((0,n)) for some n >0 and

lim a(z) < +oo, (9.120)

z—0t

then K =T + B and hence (Gk(t))i>0 s honest.
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Proof. As in the previous proof, it is enough to consider u = R(\, K)f, f €
X1, A > 7; for such f we have also u = Ly g for some g € E. Because u € X,
by (9.116) and the Fubini-Tonelli theorem, we obtain

oo o0

ARWHQW) T po=MR(2)-Q(x)
/ (Lrg)(@)zde = / y9(y) / dv | dy

y ()
0 0 Y

[e )

= /yg(y)zb(y)dy-

0

The function t(y) is continuous and nonnegative, and the only points where
it may be zero are at y = 0 or as y — 0o. As y — 0, the integral term tends
to infinity; see (9.106). Because a is bounded at 0, the other term tends to 0
by (9.102) and the "'Hospital rule gives

1

lim > 0,
y—0+ Vi) = y—>0+ —rw) a4 a(y)
y
as A > 7 and lim,_o7(y)/y = ' (0) < 7. Thus g € L([0, N], zdx) for any
N < 400 and we can put a = 0 in (9.118), and thus in (9.119), getting
e [e's) N 00
/[Ku](a;)xdm = NliI_I& / / (z|y)zdz | dy +/T(m)u(x)dm
0 0 0

> C(u),

so that (9.114) is obviously satisfied. O

9.3.3 Dishonesty

The result on dishonesty below is intended primarily as an example so that
the regularity assumptions on the coeflicients are not necessarily optimal. As
in Subsection 9.2.3, we restrict our attention to b given by (8.15): b(z|y) =
y~th(x/y) and satisfying (9.59):

1
—/zh(z)ln zdz < +00.
0

Theorem 9.33. Assume that r € C'([0,00)) with info<z<oo r'(x) > —00,

. L
za(w) zka(z)

for some n, N,k >0, a € C1((0,00)),a > 0 on (0,00) and

€ Ly ([0, 1)), € Ly([N, 00)) (9.121)
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sup
x€[0,00)

‘ = L < +o0. (9.122)

Then (Gk(t))e>o is dishonest.

Proof. To simplify notation we put = 1. We use Theorem 6.23 so that we
work with the operator extensions (9.115)—(9.116) and construct u € D(K)+
satisfying the assumptions of this theorem. Let us define

1
u(x): W f0r0<a:<1,
m fOI‘.’L‘Zl,

where m > 0 and m + 1 > k; see (9.121). Clearly, v € X and it is continuous

n (0,00). Moreover au € L1 ([N, 00), zdx) for any N > 0, and therefore we
can pass to the limit with N — oo in the integral terms on the right-hand
side of (9.118) (taking into account that for N > y we have f(jvb(sc|y)a:dx =
[2b(x|y)wdx < y). Thanks to the continuity of u, we can repeat the argument
of Theorem 9.31 getting

/[Ku](m)xdx = —kllr& a(y)u(y) /b(:r|y)9cd;v dy + /r(x)u(x)dx,
0 ar 0 0

(9.123)
for some (ay)ken converging to zero, where we used the estimate (9.97) to
pass to the limit in the last term.

Consider the interval (0, 1] where we have u(z) = 1/z%a(x). Using b(z|y) =
h(z/y)/y we have, as in (9.71),

1

— lim b(z|y)zdzr | a(y)u(y)dy = | zh(z)Inzdz < 0.
j |

Furthermore, the integral [“a(y)u(y) (fy b(z|y)zdz) dy converges to zero as
au € Li([1,0)) and fo (z|y) xdac < y, by Lebesgue’s dominated convergence
theorem. Thus (9 123) shows that assumption (iii) of Theorem 6.23 is satisfied.
Let us turn our attention to assumption (ii). Let us write

(o) + rahu)) +  ryuta) = [rw)h (”y”) yulydy | = I+ I,

x

First we consider the interval (0, 1]. We have

1 2r(z)  r() xa’(a:)) |

I =
' 22a(x)

(/\ +7'(z) — (9.124)
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and, by assumption, all terms within the brackets are bounded on [0,1] so
that I; > 0 for sufficiently large A. Moreover, I; € Ly([0,1],zdx) by (9.60).

Furthermore, by (8.16) we have fol zh(z)dz =1 so that

et [ [ 5oz [0 () [t ()

for m > 0. Hence

1
1 1 T 1 T
Oﬁﬂ/yzh(ﬁdy/wwh(y)dy

X

1
1 1 1
—L<—— | =n(E)ay=— [ zh(z
2_1’2 /y3 <>y .1'2/2

0
which is integrable on [0, 1] with respect to xdx by (9.59).
For z € [1,00) we have, as in (9.124),

1 ) 2+m)r(z) r(z)zd(2)
22tma(z) <)‘+ () x z  a(z) )’

which is positive and integrable on [1, 00) with respect to zdz, possibly with
larger A. For Is we have

I =

oo

1
1 1 x 1im
b= | y3+mh(y>dyx2+mx2+ [ =mnte
0

T

1
1
ZW 1—/zh(z)dz =0
0

and clearly, as m > 0,
1

1— [ 2"™h(2)dz | € Li([1,00), zdx).
/

0< L <

w2+m

It remains to prove (i). Integrating by parts we get

e~ AR()-Q(x) |
ST ety

e~ R(2)-Q(x)

[LA((ru))](z) =

lim 7 (y)e M OTRWy(y)

=u(z) — ) i,

e—)\R(m) -

Q)
€ T [ QRWARW (X 4 a(y))uly)dy.
) O/ ( (y))u(y)
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Because close to zero e} (@)+Q@) < A7 with A > 7, and both (ru) and
(A+a)u behave as 1/x%a(x) and 1/22, respectively, we see that both integrals,
and hence the limit, exist. Because 1/za(z) is integrable and differentiable
except at 0, we can prove, as in Theorem 9.31, that there is a sequence (2, )nen
converging to zero such that 1/a(x,) — 0. Hence, using this sequence, we have

~ AT
AR(z0)+Q(zn) < MnZn /-1
r(ry)e u(x =rx
( n) ( TL) — x%a(a:n) n

a(an)

and thus u satisfies assumption (i). O
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Applications to Kinetic Theory

10.1 Introduction

Kinetic theory is the study of the evolution of large systems of non distinguish-
able objects described by their statistical distribution (numerical density) over
the physical states. By a kinetic equation we understand an evolution equation
satisfied by this density.

It is worthwhile to reflect on the place kinetic equations have among vari-
ous descriptions of matter. Large systems of interacting particles are described
at a thermodynamical, or macroscopic, level by several parameters such as
temperature, mass density, pressure and the like. If one treats the matter
as a continuum, equations involving these parameters can be derived from
macroscopic principles of conservation, which lead to the equations of fluid
dynamics, such as the Navier—Stokes or Euler equations. On the other hand,
in principle, these macroscopic parameters can be derived by analyzing the
Newton equations describing dynamics of all molecules of the system. The
sheer number of them, however, usually makes such an approach unfeasible.
Kinetic theory provides an intermediate level of description by looking at the
evolution of the number density of a single particle which, nevertheless, is
sufficient for calculating macroscopic parameters. Kinetic modelling is always
based on microscopic laws of classical dynamics but averaging over states usu-
ally results in integro-differential equations for density. As such, kinetic models
are clearly less accurate than their microscopic counterparts but much richer
than the models obtained by treating the system only from the macroscopic
point of view.

Particular examples studied in Chapters 8 and 9 described systems of par-
ticles characterised by the function giving their statistical distribution with
respect to their size. The corresponding kinetic equation was a suitable frag-
mentation equation (8.2), (9.1), or (9.96).

The origins of mathematical kinetic theory go back to the second half of
the 19th century when the first kinetic model was rigorously established by
Ludwig Boltzmann in 1872. This model is the celebrated Boltzmann equation
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describing the evolution of the distribution function f of a rarefied gas (rar-
efied means here that the mean distance between particles of the gas is large
in comparison to their size) undergoing only binary collisions. We can roughly
define the distribution function

R, x R* xR3 3 (t,r,v) — f(t,r,V)

by saying that f(¢,r,v)ArAdyv is the number of particles in the box r + Ar/2
having the velocity in v + Av/2 at a time t¢.

Formal derivation of the equation is similar to that in the previous chap-
ters; that is, we equate the change of the amount of particles in a particular
state (r,v) due to transport in the phase space to the change due to colli-
sions. The latter is written as a difference of the loss term, representing the
particles moving after the collision to the states with other velocities, and the
gain term, describing the particles which, undergoing collisions, change their
velocity to v. This gives the Boltzmann equation

af of F Of

—~ 4tV 4+

ot or m ' ov - _L(fa f) +G(fa f)v (10.1)

where the loss term L is given by

L(f, )(t,r,v) = f(t,r,v) / Q(u, @)f (¢, r, w)dudw

R3xS%

and the gain term is

G(f, t,r,v) = / Q(u,q)f(t,r,v")f(t,r,w')dudw.

2
]RC“><SJr

Here F is the external force, m is the mass of particles, v, w are pre-collisional
velocities of test and field particles, respectively, and v/, w’ are post-collisional
velocities. Furthermore, u is the unit vector in the direction of the apse-line
bisecting velocities q = w — v and ¢’ = w — v/, §2 = {u € S?; u-q > 0},
and @ is the collision kernel depending on the interaction potential. A large
class of interactions can be described by power law potentials

Q(u,q) = B(0)q\7 /=1, (10.2)

where 0 is the angle between u and q and ¢ = |q] is the R3-norm of q. The
parameter ¢ is the collision parameter giving the so called hard collisions
for o > 5, Mazwell molecules for o = 5, and soft collisions for o < 5. A
very important case of hard, or rigid, spheres is obtained by taking ¢ — oc.
We recall that in the latter case the particles are assumed not to interact at a
distance but collide according to the laws of elastic impact, as do billiard balls.
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This seems to be a good approximation of a strong repulsive force exerted by
the molecules only when they are close to each other.

Though the formal derivation of the Boltzmann equation (10.1) is rela-
tively simple, the rigorous approach involves several heuristic steps which are
hard to justify on physical grounds. These include assumptions that only bi-
nary collisions are taken into account and that the collisions are instantaneous
and local in space (see, e.g., [66, 55]).

The Boltzmann equation from the very beginning generated a heated de-
bate involving some of the biggest names of 19th century science (e.g., Zermelo
and Poincaré) about the relation between the statistical, irreversible, charac-
ter of the equation and the reversibility of the classical dynamics from which
it was derived (see e.g. [159, 66]).

The philosophy behind the derivation of the classical Boltzmann equation
is so powerful that it extends far beyond the classical theory of gases and it
can successfully be applied to a range of problems arising in various sciences,
especially when one looks at the collective behaviour of large populations; see
[56].

The Boltzmann equation (10.1) is nonlinear (quadratic) and it is notori-
ously difficult to analyse. Our aim here, however, is to look at simpler, linear
versions of this equation.

The linear Boltzmann equation arises in situations where we have a two-
component mixture in which one of the components has a very small density,
so that the collisions of particles of this species (called test particles) can be
neglected in comparison with the collisions with particles of the other species
(called the field particles), and the latter can be neglected in comparison with
the collisions of field particles with each other. If this is the case then evolution
of field particles is not influenced by test particles, but the state of the latter
depends on the field particles. A particularly interesting case arises when field
particles are in equilibrium and hence have a Maxwellian distribution

fo(V) = a06_57)2, (103)
with
_ M 5= M
ao_p2ﬂ'k38’ - 2/639’

where v = |v|, p, M, © are, respectively, the density, the elementary mass, and
the temperature of the field particles, and kg is the Boltzmann constant. In
general, p, M and © can depend on r and ¢ (but not on the velocity v). In
our considerations, however, they are constants. If we substitute this density
for the density of the field particles in (10.1), we obtain the equation

of , Of [ F Of _

S, TVt

ot or m OV - _L(f7 fO) + G(fa f0)7 (104)

which is linear and, after some manipulations, [66, pp. 166-167], the right-hand
side can be written in the form
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_L(f7 fo)(l‘, V) + G(f7 fO)(r7 V) = —V(I‘, V)f(I‘, V) + /k‘(I’, v, Vl)f(ra V/)dV,,
R3
(10.5)
where v is called the collision frequency and k is called the scattering kernel.
The principle of conservation of particles requires that, at least formally,

[ =vtemswn + [rvv)se i | av=o
J

R3

for any f, which yields, by changing the order of integration,

v(r,v) = /k:(r,v’,v)dv', (r,v) € R® x R3. (10.6)

R3

The precise form of k and v is determined by the scattering potential. We
discuss some typical cases in Subsection 10.1.2.

The linear Boltzmann equation appears in a number of examples ranging
from neutron transport in a gas moderator, electron transport in solids and
ionized gases, to radiative transfer through a planetary or stellar atmosphere
in local thermal equilibrium. In some of these cases, however, important mod-
ifications should be taken into account sometimes producing collision terms
which are not given by standard integral operators. An example describing
electron transport through a crystalline lattice of a semiconductor, where the
scattering operator is an integro-translational operator, is introduced in Sub-
section 10.1.3. We start by introducing general notation and terminology.

10.1.1 General Definitions and Notation

As we described in the introduction, we are interested in modelling the motion
of a gas of test particles through a background of field particles. The test
particles are driven by an external force F that depends on the position vector
r and on the velocity v, but not on time ¢, and are scattered by localized in
space and instantaneous collisions with field particles which are supposed
to be fixed. This, together with the assumption of low density of the test
particles, makes the problem linear and the time evolution of the one-particle
distribution function f of test particles, depending on position r, velocity v,
and time ¢, is described by the linear equation

af of F Of

5 or o5yt =Bl (10.7)

Here the independent variables (r, v) take values in a set A C R3xR3, which is
called the phase space of the problem. Let us explain the terms and coefficients
of (10.7). First, we define the homogeneous vector field
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o F 0

XO::v-a—i—E-a—v. (10.8)
Then, formal for a moment, operator f — Agf := —Xof is called the free
streaming operator, f — Af = —(Xo+v)f and A+ B are called the streaming
operator and the (full) transport operator, respectively. Finally C = —vI + B
is called the collision operator. Indeed, as discussed in the previous section,
the collision term C'f describes the change in f due to scattering on the
background. This term is not related to the transport phenomena described
by (10.8), which are accounted for by Ajg.

We suppose A to be either the whole space R? x R? or an open subset
of R3 x R3 with a piecewise differentiable boundary. In both cases our first
objective is to study the streaming operator. We list the assumptions which
are valid throughout this chapter.

(A1) The field F : 4 — R? is independent of time and is Lipschitz-continuous.
(Az2) The field F is divergence-free; that is,

3
OF;
; B0: =0. (10.9)

(A3) The collision frequency v : A — R satisfies 0 < v € Ly 0c(A).

Our aim is to study both the Cauchy problem for (10.7) if A = R*xR3, and the
appropriate initial boundary value problem otherwise. If the collision operator
B is bounded, then the Bounded Perturbation Theorem, Theorem 4.9, reduces
these two problems to the corresponding problems for the streaming operator
alone. However, the study of the full equation in both cases becomes rather
challenging when the operator B is unbounded.

We study two classes of the full transport equation (10.7). The first one
is the classical linear Boltzmann equation, where the collision operator B
is an integral operator, and the other is the linear Boltzmann equation of
semiconductor theory, where B an integro-translational operator. We briefly
describe these two cases in the following subsections.

10.1.2 Linear Maxwell-Boltzmann Equation

In this subsection we discuss the scattering kernel k£ for the linear Boltzmann
equation with external field (10.4) where the test particles of an ionized gas
interact with field particles either as rigid spheres, or according to the power
law (see, e.g., [135]).

In general, the theory of ionized gases in the presence of an external electric
or magnetic field leads to a system of integro-differential equations describing
the evolution of the distribution function of each type of particles, which are
similar to the nonlinear Boltzmann equation (10.1). However, when the ion-
ization is weak, it is possible to neglect collisions between charged particles
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which, under the assumption that the field particles have the Maxwell distri-
bution, allows us to describe the evolution of the gas particles by the linear
Boltzmann equation (10.4).

Following, for example, [135, pp. 994-996], in the case of hard spheres the
scattering kernel is given by

a Bm? M2 —v2\?
k " = - V| = 10.10
2% |Vv,exp< tz (vevie =) ) oo

where m and M are the masses of test and field particles, respectively,

o (MNP (ma M\ D?
=P\ orkr M 4

D is the sum of diameters of the interacting particles, and the other parameters
were defined at (10.3).
The collision frequency v is given by

2
v(v) = dra <m+M> Y (v), (10.11)
M
where
1 7 1
Y _ —Bz?/4 1 B
(v) (U+2ﬂv>/e dw—i—ﬂe

0

and v can be proved to be an increasing function satisfying the estimate

1 1
7Y <v(v) < j(v + o), (10.12)
for some constants [ and 7.

The calculations for the power law potentials are not as neat but yield
estimates similar to those for hard spheres. Let us recall, (10.2), that in this
case the interactions are governed by

Qy(u,q) = B(0)q",

where v = (o0 — 5)/(0 — 1). Calculations in this case are usually done under
the technical assumption of angular cut-off, introduced by Grad, [91, Vol.1,
p. 26], to avoid grazing collision. This amounts to the requirement that

a; < ﬂ(&) < as
sin 6

for some constants ap,as. Under this assumption it can be proved that if
v > —1, then
ky(v,v') < ask(v,v'), (10.13)
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where k., is the scattering kernel corresponding to (), and a3 is a constant.
Moreover, the collision frequency is a decreasing function of v for v < 0,
constant for v = 0 (Maxwell molecules) and increasing for 0 < v < 1. The
limiting case v — 1 corresponds to rigid spheres. As a consequence, for v < 0,

/k‘w(v',v)dv’ =v(v) <v(0). (10.14)
R3
Moreover, there are constants ¢ and C such that
cly(v,v') < ky(v, V') < CL,(v,V')

where

M+m\"™ ra Bm? M2 —v2\?
I = s (V= VIt—r——r] |-
(v, V) < 2M ) Blv —v'|2— A WVIVE v v|+m [v —v/|

10.1.3 Linear Boltzmann Equation of Semiconductor Theory

The transport equation of semiconductor theory probably is less known to
the general audience than the Boltzmann equation so we spend more time
describing the model.

We consider a gas of electrons which moves through the crystalline lattice
of a semiconductor subject to an external electric field E, which, in the linear
model considered here, is assumed to be known. The motion of the gas is
described by a density function f satisfying the transport equation (10.7),
customarily written in terms of the wave vector k rather than velocity v:

0f  10= Of en Of

ot Thok ar TRt ok OV (10.16)
As before, the independent variables (r, k) take values in a domain A C R*xR3
and ¢t € R. The unknown function f(¢,r, k) represents the density of electrons
at the position r, with the wave vector k, at time ¢t. The parameters h and
e are the Planck constant divided by 27 and the positive electric charge,
respectively. The electron energy e depends on the band structure of the
crystal and defines the molecular velocity by

v(k) := %akg(k). (10.17)

Here we consider only the parabolic band approximation for the energy which
is given by

h%k?
k = —,
()= o

where m* is the effective electron mass, which gives

(10.18)
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h
k

m*

vV =

and the spatial part of the free-streaming operator in (10.16) as in (10.7).
Now let us describe the collision term in detail. We write

Cf=—vf+ BYf, (10.19)

where this time the collision operator B is given by
Bf(r,k) = /]11{3 S(r, k' k) f(r,k')dk’ (10.20)
and the collision frequency v is defined as
—v(r,k) = . S(r,k,k')dk’. (10.21)
The kernel S is defined by
S(r,k k) =G1(r,k, k") ((ng+ 1)d(e(kK') —e(k)+hw) 4+ nyd(e(k') —e(k) —hw))
+Go(r, k, K)o (e(kK') — e(k)), (10.22)

where G; and Gy are continuous functions. The constant n, represents the
optical phonon occupation number and is given by the formula

1

ng=————,
! eXp(kZL%L)—l

where kp is the Boltzmann constant, 77, is the constant lattice temperature
and w is the positive constant phonon frequency. Furthermore, § denotes the
Dirac distribution. We show in the sequel that all compositions involving the
Dirac distribution are well defined.

Though the general mathematical structure of (10.16) is the same as that
of the linear Boltzmann equation, the scattering mechanism in semiconductors
makes (10.16) substantially different from (10.4). The scattering of electrons
on optical phonons is inelastic; that is, the electron can gain or lose only a
prescribed quantum of energy, here equal to hw, and this instantaneous change
is accounted for by the terms §(e(k’) —e(k) = hw) in the scattering kernel. The
third term d(e(k’)—e(k)) accounts for the scattering of electrons on impurities,
which is elastic, and so Pauli’s exclusion terms disappear. Thus this term only
describes deflection of electrons without changing their energy. As we show,
the occurrence of the Dirac distribution turns the collision operator B, which
in (10.4) is an integral operator, into an integro-translational operator which
requires different mathematical tools for analysis.

The mathematical study of such operators in the context of semiconductor
theory has a long history (see, e.g., [117, 118, 120, 121, 122]) but only in the
case of bounded collision frequency v which corresponds to the scattering
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on polar optical phonons. In this case the collision operator C' is bounded
in the physically natural space of integrable functions and the question of
well-posedness of (10.16) reduces to that of the transport equation.

However, the choice of scattering kernel depends on the material con-
sidered and many important materials (silicon, gallium arsenide, [103]) give
rise to unbounded collision frequencies and consequently, to the right-hand
side of (10.16) being the sum of two unbounded operators. Such models have
only recently been considered (see [119, 36, 37]) and then only in the space-
homogeneous and field-free case.

The Boltzmann equation of the semiconductor theory is discussed in Sec-
tion 10.4.4 where we prove that the semigroup solving it is honest in many
physically relevant cases. However, we are also able to construct collision op-
erators for which either the semigroup is dishonest, or there are multiple
solutions to (10.16).

10.2 Cauchy Problem for the Streaming Operator in
A =R3 x R3.

On A = R3 x R? we consider the Lebesgue (and also Borel) measure y defined
by dp = dpy v~ = drdv. We frequently use the notation

Furthermore, to simplify the notation we put x = (r,v) and A(x) =
(v,F(r,v)/m). Clearly, A is a Lipschitz continuous and divergence-free func-
tion from A to A. Let us denote by K the corresponding Lipschitz constant.
Then, for any x € A and t € R, the initial value problem

dy
Y _ R
s Aly), seR,

y(t) =x, (10.23)

has one and only one solution y(s) taking values in A. This allows us to
consider the function ¢ : A x R?> — A defined by the condition that for
(x,t) € A xR,

s — p(x,t,8), seR

is the only solution of the problem (10.23). Integral curves of (10.23), that is,
curves given parametrically by ¢, are called characteristics of Xj.

The properties of the function ¢ are well known, [97, 165, 160]. We list
here those that are relevant for studying the streaming operator in X.

Proposition 10.1. The function ¢ has the following properties.
1. p(x,t,t) =x forallx € A, t € R;
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2. o(p(x,t,8),8,7)=px,t,7) forallx e A, t,s,7 € R;

3. p(x,t,8) = p(x,t —5,0) = p(x,0,s —t) for allx € A, t,s € R;
4. |e(x,t,8) — @(y,t,8)] < eK|t’S||x —y| forallx,y € A; t,s € R,
5. Function A x R x R > (x,t,8) — ¢(X,t,8) is continuous;

6. The transformation T defined byt =1, s = s,y = p(x,t, ) is a topological
homeomorphism which is bimeasurable and its inverse T ~' is represented
byt=t, s=s,x=0(y,s,t);

7. For allt,s € R the transformation of A onto itself defined by y = p(x,t, s)
1S Measure-pPreserving.

The last property is known as the Liouville theorem (see e.g. [66]) and follows
from the fact that X is divergence free.
Now we can properly define and study the operator Ag. We define

AO = _X0f7
D(Ay) = {f € X; Xof € X}, (10.24)
where, stretching the definition of distribution multiplication a little, Xg f is
understood in the sense of distribution. Precisely speaking, if we take C§(A)

as the set of the test functions, f € D(A4p) if and ounly if f € X and there
exists g € X such that

[ wodu= [ oot = [ 1A 00a (10.25)
A A A

for all ¢ € C3(A), where

6

A-0p(x) = Ai(x)0i(x). (10.26)

i=1

The middle term in (10.25) exists as A is Lipschitz continuous, and the last
equality follows as A is divergence-free. If this is the case, we define Agf = g.

Now we show that if assumptions (A1) and (As) are true, then the operator
Ap is the generator of a stochastic semigroup on X. The result we obtain could
immediately be extended to each L, with 1 <p < oo.

Theorem 10.2. If A : A — A is Lipschitz continuous and divergence-free,
then the operator Ao defined by (10.24) is the generator of a strongly contin-
uous stochastic semigroup (Ga,(t))i>0, given by

(Gao () f)(x) = fle(x,1,0)), (10.27)
forany f € X andt > 0.
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Proof. Let (Zy(t))i>0 denote the family defined by the right-hand side of
(10.27). The proof of the theorem is carried out in the following three steps.
In (o) we show that (Zy(t)):>0 is a strongly continuous semigroup of bounded
linear operators. In (3) we prove that the generator Ty of (Zo(t))i>0 is an
extension of Ay. Finally in () we recognize that D(Ty) C D(Ap) so that the
operators Ty and Ay coincide and (G4, (t))i>0 = (Zo(t))t>0
(«) By properties 6 and 7 of Proposition 10.1, we see that for any f € X
the composition (x,t) — f(e(x,t,0)) in (10.27) is a measurable function
satisfying the equality
126011 = I1£1l (10.28)

hence (Zy(t)):>0 is a family of bounded linear operators from X to itself. Then
the following relations can easily be verified.

(1) 20(0) = I
(a2) Zo(t+ 8) = Zo(t)Zo(s), for all s, ¢ > 0;
(az) limy_o+ || Zo(t)f — fl| =0, for all f € X.

In fact, (o) and (ag) follow immediately from Proposition 10.1 (1) and (2).
From (10.28), to prove (a3) we can follow the argument of Example 3.10.
Thus it is enough to show (a3) for every f € C§°(A). For such fs we have
limy g+ (Zo(t) f)(x) = f(x) for all x € A. Furthermore, if |f(x)| < M for all
x € A then |(Zo(t)f)(x)| < M for all x € A and, because the support of
Zo(t)f is bounded, the Lebesgue dominated convergence theorem shows that
(cwg) is satisfied. Thus (Zo(t))s>0 is a Co-semigroup.

(B) Now let Y be the set of real-valued functions which are defined on A,
are Lipschitz continuous, and compactly supported. Obviously YV C D(Ay)
because if f € ), then the first-order partial derivatives of f are measurable,
bounded, and compactly supported and thus, multiplied by Lipschitz contin-
uous functions of A, belong to Lq(A,du). For a fixed f € ), we now denote
by 9 the real-valued function defined on A x R™ by

V(x,t) := (Zo().f)(%).

From the previous considerations and Proposition 10.1, there exists a mea-
surable subset E of A x RT, with pu(A x RT\ E) = 0, such that at each point
(x,t) € E the function ¥ has measurable first-order partial derivatives. In
particular,

D 1) = (Zo(DA0F)(x). (1) € B,

and therefore, if we let Ay := esssup,c 4 |Aof], then
|0:0(x, )| < Ay,

for any (x,t) € E.
From this and from part («) of the proof it follows that for every h > 0,
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h
17120 f = ) = Ao | = 17" [ (Zals) ~ D Aofdsl] 0
0

as h — 0F. This proves that J C D(Tpy) and that Ty f = Aof, for all f € Y.
Next we prove that ) is a core of Ay, that is, that (Ag, D(Ap)) is the
closure of (A4g,Y). Let w., € > 0, be a mollifier (see Example 2.1) and for
g € X, let w: * g be the mollification of g. We use the Friedrichs lemma,
[133, pp. 313-315] or [156, Lemma 1.2.5] which states that there is C' > 0,
independent of €, such that for any L, function f, 1 < p < oo, we have

[Ao(we * f) — we x Ao fI| < CI £ (10.29)

and
Tim (e £ = f1|+ [ Aofwe = /) = Aof) =0 (10.30)

Estimates (2.9) and (10.29) imply

[Ao(we ) < CIIFII + (1 Ao f1l

which shows that the mollification f — w. * f is a continuous operator in
D(Ay) (equipped with the graph norm) uniformly bounded with respect to e.

Next we observe that the subset of D(Ag) consisting of compactly sup-
ported functions is dense in D(Ap) with the graph norm. Indeed, let f €
D(Ap). Because both f, Agf € X, the absolute continuity of the Lebesgue
integral implies that for any given § > 0 there exists a compact subset A" of
A such that

/ﬂﬂ+MMWm<&
A\ A/

For this A" we choose 1) € C§°(A) satisfying 0 < 1(x) < 1 for all x € A, and
P(x) =1 for all x € A’. Now it is easy to see that ¢f € D(A4y) and has a
compact support. Moreover,

Mﬁ—fﬂgz/"vum HAdwﬁ—Awngz/‘mmwu+L/"vum

AN AN AN

where L = sup |Agt)| can be made independent of A’ due to the fact that A
is the whole space.

Let f € D(Ap) be compactly supported. From Example 2.1 we know that
we * f is infinitely differentiable and compactly supported and thus belongs
to Y. Equation (10.30) yields that we * f — f in the graph norm of D(Ay).
Because we have shown above that compactly supported functions from D(Ay)
are dense in D(Ap), we see that (Ao, D(Ap)) is the closure of (Ap,)) and,
because Ty is a closed extension of (Ag,Y), we obtain Ay C Tp.

(7) Suppose f € D(Tp). Then for any fixed A > 0 there exists a unique
g € X such that f = (A —Ty)~tg. For any v € C3(A) we have, by (10.25),
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/ Ao fbdyt = / F() (A - 09)(x)dax
A A

:/ / e“g«o(x,t,o»dt) (A - 00) () dp
A 0

- / /e_)\tg(ga(xv t,0))(A- 3¢)(X)dﬂx) dt
A

e Mg(y)(A- 9v)(¢(y,0, t))duy) dt

o

dt

/
/

e“diﬁ(@(y,ﬂ,t))dt) 9(y)dpy

0

Il
RS

e (p(y. 0, 6)[Fa(y)dpry + A / ( / e Mp(e(y, o,t>>dt)) o(y)dpsy
A

A

9y )iy + A / ([ e atiotxt.00at v

(g — Af)ydp.

B B

This implies that f € D(Ap). Hence Ty C Ag and Agf =Tpf. O

Remark 10.3. We have proved that the semigroup generated by the operator
Ay is stochastic, therefore we have

/Aofdu ~0 (10.31)
A
for all f € D(Ap).

Now we turn to the streaming operator A given by the field f — —Xof —vf,
where v satisfies assumption (Ag). We define A by

Af = Aof —vf,
D(A) = {f € D(Ao); vf € X}. (10.32)
The following theorem holds.

Theorem 10.4. If assumptions (A1)—(As) hold, then the operator A defined
by (10.82) is the generator of a substochastic semigroup (Ga(t))i>o given by
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(Ga(t)f)(x) = e~ Jor(elxsOds £ ((x 1, 0)), (10.33)
for fe X andt > 0.

Proof. Define (Z(t));>0 to be the family on the right-hand side of (10.33).
From the assumptions we see that

AxRT 3 (x,t) — [ v(p(x,s,0))ds
/

is a measurable and nonnegative a.e. function. This, together with Proposition
10.1, implies (as in Theorem 10.2) that (Z(t));>0 is a family of bounded
operators in X which satisfies, for all f € X, the inequality

1Z@) fI] < I1F1) (10.34)

The semigroup relations («1)—(as) can be verified as in the proof of Theorem
10.2. To prove strong continuity here, we use, in addition, the property that

t

li 0))ds = 0
Jm | v(p(x,s,0))ds

for a.a. x € A and the boundedness of the exponential function in (10.33).
Hence, the family (Z(t)):>0, defined by (10.33), is a substochastic semi-
group. Denote its generator by T
In order to see that D(T) C D(A) we begin by proving that for almost all
(x,t) € A x RT we have

8 t

o [ et 0.9)ds = v(e(x.0.0). (10.35)
0

We use an argument similar to that used in the proof of Theorem 2.40. The

set

t+1/k t+1/k
Ey = {(x,1); liminf k v(p(x,0,5))ds = limsup k v(p(x,0,5))ds}

—© t k—o0 t

is a measurable subset of A x RT. On the other hand, (x,t) € E; if and only if
the derivative exists and satisfies 0, fot v(p(x,0,s))ds = v(p(x,0,t)). Because,
for almost all x € A, the x cross-section Ex = {¢; (x,t) € E1} is such that
u(R*\ Ex) =0, we obtain u(A x RT\ E1) = 0, and the statement is proved.

Now suppose that f € D(T). Then for any fixed A > 0 there exists a
unique g € X such that f = (M —T)7'g = [ exp(—At)Z(t)gdt. To show
that vf € X we can suppose g > 0. Then
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Hl/f” / d/Jx /(/ e [0 (AMv(p(x, 5’0)))dsg(g0(x,t70))dt) dﬂx
oo
= /(/ v(p(y,0,t))e” Jot(/\+V(<p(y,078)))dsg(y)duy) dt
0 \4
a4 [ u(p(y.0.9)ds
— e e dt ) g(y)duy
0
(1 — )\/ e,fé(/\w(w(y,O,s)))dsdt) 9(y)duy = /(g — Af)dp < .

0 A

/
/

Next we show that f = (A —T)"'g € D(Ap). For any ¢ € C}(A) we have

[ Aofvdu= [ £60(A- 00) )
A

A

(/e_j‘()t(A+y(¢(x,(e,0)))ds (o(x,t,0))d ) (A - 0Y)(x)dpux

0

e Jo Otr(eGes.0))ds o (o (xc ¢, 0)) (A - ) (x )dux) dt

0\8 0\8 B —

( — [s O+r(ev.0.9)ds g (oY A - ) (g (y,O,t))duy) dt

v s S
/ — J§ O +v(e(y,0,5)))d —(p(y,0,t))dt ) 9(y)duy
A 0

y)dpy

oo

+ (A +v(p(y,0,t ))e_f‘;(H”“"(y’o’s)))dsw(w(y,07t))dt)9(3’)duy

e
/

0

/ X) + AF(%) + (%) f(0)b(x)du = — / (9~ Af — vf)bdp.
A

A

Because vf € X, we have f € D(Ap) and Agf = —g+ A\f + vf. Hence

(i) D(T) C D(A), with Af = T'f;
(ii) for arbitrary f € D(T), if g := (A —T)f, then also (A — A)f =
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so that A defined on D(A) is an extension of 7. On the other hand, Ay is
dissipative and thus A = Ay — vI is dissipative on D(A), see (10.32). Thus
for A > 0 the operator AI — A is a one-to-one extension of AI — T where the
latter is invertible, because T is a generator. Therefore, by Proposition 2.2,
we obtain D(A) = D(T) and hence (Z(t));>0=(Ga(t))i>0. O

10.3 The Streaming Operator in A ¢ R3® x R3

10.3.1 Preliminaries

In order to define the streaming operator when A ¢ R3 x R, and also to
characterise its properties, we need some preliminaries.

Let us recall that in this case A is assumed to be an open subset of R® with
a piecewise C'!' boundary denoted by 9A. With this assumption, the outward
normal field to A, denoted by n, is defined a.e. on 94 (see, e.g., [48, 93]).

Typical examples of A that appear in our considerations are A = 2 x R3
and A = 2 x By, where {2 is on open subset of R?® with a piecewise C!
boundary, representing the position phase-space, and the velocity v is either
arbitrary, or restricted to the ball By with the centre v = 0 and radius V.
However, most considerations are valid for a general A.

We keep the same notation as in Subsection 10.1.1 and, in particular,
suppose that assumptions (A;)—(As) are satisfied.

In the previous subsection we have seen that a crucial role is played by
the characteristics of the free streaming operator, represented by the flow ¢.
They are even more significant in the case of domains with boundary, as they
allow us to introduce the coordinates in A which are consistent with the flow
in the sense that each x € A is described by a pair (z,s), where z € 94
is the entry (or exit) point of a characteristic passing through x and s is a
scalar parameter running along it. In the new coordinates the field X is just
the ordinary differential operator d/ds. These ideas have been developed in a
series of works (see, e.g., [48, 163, 92, 50]) to mention the most seminal ones.

To make these ideas precise, let us return to the Cauchy problem (10.23)
and, as before, denote its solution by s — ¢(x,t,s). However, because A is
not equal to the whole phase-space, this time ¢ is only defined in a suitable
neighborhood of the initial time t.

Setting ¢ = 0 for a moment, we define (—t_(x),t+(x)) to be the maximal
s-interval for which point ¢(x,0,s) lies in A. Therefore, returning to an
arbitrary ¢, the function ¢ is defined on the set

{(x,t,8); xe AjteRt—t_(x) <s<t+ti(x)}, (10.36)

where it satisfies the properties listed in Proposition 10.1 (with obvious re-
strictions caused by A # R® and thus possible boundedness of the existence
interval).
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We note that because A is globally Lipschitz continuous on A, if the inter-
val (—t_(x),t4(x)) is finite, then the function s — ¢(x, 0, s) must be bounded.

Conversely, suppose that the extension of the curve s — ¢(x,0,s) to the
right or to the left is finite, that is, that there exists one of the limits

z4 = lim x,0,s) € A. 10.37
+ otts () o ) ( )
Then, defining
oA = {x € 94; A(x) # 0},

we adopt the assumption that z4+ € dA’. In other words, we assume that
whenever the integral curve ¢ has a finite extension to one of the end points
of the maximal interval of existence, then this end point corresponds to a
finite maximal time ¢4 (x), respectively. In such a case

zy = p(x,0,tt4 (x)). (10.38)

From the joint continuity of the flow it follows that for any ¢ > 0 the
sets {x € A; ty(x) > t} are open. Consider the set {x € A; t;(x) > t}. If
it were not open, we would have a sequence (x,)nen converging to x with
0 <ty(xp) <t from which we could select a subsequence such that ¢4 (x,, )
converges to, say tg < t. Thus 94 3 z, := ¢©(Xy,,0,t4+ (X, )) converges to
0A 3 z = ¢(x,0,tp) which contradicts the assumption that ¢, (x) > ¢t. The
other case is analogous. Hence the functions ¢4 : A — R™ are lower semicon-
tinuous and therefore measurable.

Next, for any x € A, we define

I(x) =t_(x) + t4(x).

Thus I(x) can be viewed as the length of the integral curve passing through
x. Because the functions t4 are measurable, [ is also measurable.
After these preliminaries we define

D+ = {Z € 8/17 Z = <P(Xa07t+(x))7x € A,t+(X) < OO}’
D_={z€dA; z=p(x,0,—t_(x)),x € A, t_(x) <oo}. (10.39)

The set Dy (resp., D_) is called the outgoing (resp., incoming) boundary.
The sets D4 are subsets of 94 but in general they are not disjoint nor do
they exhaust dA. However, because 04 is piecewise C', the set where it is
not C! is of the surface measure zero. Consider z in a C' portion of 94 and
a trajectory ¢(z,0,s) passing through z. In such a case z € Dy N D_ if and
only if z is the turning point of ¢(z,0, s) in a local coordinate system centred
at z. Thus the Jacobian of ¢ must vanish at this point, see Example 10.8.
However, by Sard’s theorem (e.g., [138]) the set of such points has measure
0, [48, 50] or [92, p. 375]. On the other hand, 94\ (D4 U D_) is the set of
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points through which no characteristic enters or leaves A and therefore these
are the stationary points of 4. Because at any stationary point of 4 we must
have v = 0, we see that this set is at most three-dimensional and thus must
have measure zero. Some of these ideas are illustrated in Example 10.8.

Hence we see that D, U D_ exhaust dA up to a set of measure 0. From
the properties of ¢ and t4(x), it follows that Dy are Borel sets. On Dy we
can define ¢4 (x) in the following way. If x € D_, then we put t_(x) = 0 and
denote by ¢4 (x) the length of the integral curve having x as its left end point.
Similarly, if x € D, then we put ¢4 (x) = 0 and denote by ¢_(x) the length of
the integral curve having x as its right end point. It is important to remember
that this is a ‘time’ along the trajectory and not the arc length.

As we said earlier, the general idea is to represent A as a collection of
characteristics running between points of D_ and D,. However, we cannot
do this in a precise way now as there may be too many characteristics which
extend to infinity on either side. As we have not assumed A to be bounded,
D_ or Dy may be empty. There also may be characteristics running from
—00 to +oo. Thus, in general characteristics starting from D_ or ending at
D, would not fill the whole A and, to proceed, we construct an auxiliary set
by extending A into the time domain and use the approach of [50] which is
explained below.

Interlude — Green’s Formula

Here we will briefly discuss important results from [50] or [92, Lemmas XI.3.1,
X1.3.2] which form a foundation for our further considerations. First we note
that these results are formulated and proved in the time-dependent case which
requires that the domain A is extended into the time domain as

Yr=Ax(0,T), 0<T<+o0.

Characteristics are lifted to X7 by considering the parameter s as the new
coordinate: instead of the integral curves ¢(x,0,s) s € (—t_(x),t+(x)) in 4,
we use the curves (p(x,0,5),s) in X7. In this formulation the boundary has
two new components and the characteristics, which in the previous case could
take infinite time to reach dA, will enter or leave X1 through the top s =T
or the bottom s = 0. Hence all characteristics have finite length at most equal
to T

All considerations done above for A can be carried out without any change
in this case. Thus, 02 + are, respectively, the incoming and outgoing parts of
the boundary of X1 defined in the same way as D.. Because all characteristics
are now finite, we can represent Xp in the following way. For a given point
& € X7 _ there is a unique characteristic of length ¢ (§) with left end point
at . As argued for A, the collection of points of X7 belonging to trajectories
which do not have the initial point at X7 _ is of measure zero. Similar
considerations are valid for 0X7 . Thus, with some abuse of notation, we
can represent Y, up to a set of measure zero, in one of the two ways
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Zp={(&s); £€0Xr,-,0<s <ty (8}
Yr={(s); £€0Xp4,0<s<t_(&)}. (10.40)

Next we find the transformation of measures corresponding to this change of
variables. We denote by dm¢ = dpxds the Lebesgue measure on Xp.

Let us further denote by @ the set of test functions v in Xp having the
following properties: v is differentiable along each characteristic, v and Xgv
are bounded, and the support of each v is bounded, and does not meet char-
acteristics of arbitrarily short length. Then we have:

Lemma 10.5. (i) There are unique positive Borel measures dmy on 0Xp 1
such that

/Xovdm: / vdmg — / vdm_, v € . (10.41)
Xt

82T)+ 327'1_
(i) The measure dm can be written in one of the two forms

dm =dmyids, dm =dm_ds. (10.42)

The factorisation in (10.42) expresses the transformation of measures when
one changes the Cartesian coordinates in X1 to the coordinates along char-
acteristics, as in (10.40). If we split the boundaries into the lateral part
0A x [0,T], and the temporal part A x {0,7}, then the measures dmy on
OA x [0,T] can be written as dudt, where duy are Borel measures on Dy,
respectively, and the measure on the temporal part is just du, [92, pp. 408].
Using these representations, we can use (10.42) explicitly in one of these two
forms: either

. A t-(y)AL
//w(x,t)d,uxdt = / // w(p(y,s,0),t — s)dsduy +dt
02 0D, °

t_(y)AT
+/ / w(p(y,s,0),T — s)dsdu,, (10.43)
A0

or
T T t (VAT —1)
//w(x,t)duxdtzf/ / w(p(y,0,s),t+ s)dsduy, _dt
0 A

0 D_ 0
t+ (Y)AT
w[ ] wlety.0.9).s)dsduy. (10.44)
A 0

which are valid for w € Ly (X7, dudt).
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Remark 10.6. To have a better understanding of these formulae, let us have a
closer look at (10.44). The left-hand side is the integral of w in the Cartesian
coordinates. Passing to the description along the characteristics, we represent
each point ( € Xp in terms of the entry point on { € X7 _ and the time
0 < s < ty(f) < 40 to reach ¢ from & along the characteristic. So, if
& = (y,t), then ¢ = (¢(y,0,s),s +t) and t(§) = t4(y) A (T —t). Then
the right-hand side represents the iterated integrals in the new coordinates
obtained by the Fubini theorem. The first integral contains all characteristics
coming from the lateral boundary D_ x [0,7], that is, starting from (y,t),
y € D_,0 <t < T and having length ¢t (y) if they leave X by D, x [0,T],
or T'—t if they leave through the top t = T". The second integral encompasses
the characteristics entering through the temporal boundary {(y,0); y € A}
and again stretching either to Dy x [0,T] (and then with the length ¢ (y)),
or to the top t =T (in which case the length is T').

Remark 10.7. By comparing (10.41) with the classical Green formula for a
differentiable function u (see, e.g., [48]),

/(“)xAudux = /uA-ndo,
A

oA

we see that duy = +(A-n)do on Dy = {x € 94; A-n = 0}, where n is the
outward unit normal and do is the Lebesgue surface measure.

Example 10.8. Let us illustrate the above considerations by finding Dy and
the corresponding measures for the field

XOf:varf+Eavf7

where (r,v) € A =(—1,1) x (=1,1) and E > 0 is a constant. As in Remark
10.7 above, we disregard the time part in Xp and only work with A.
To find characteristics, we solve the system

&=,
ns = F,
£(s)]s=t =,
1(s)|s=t = v,

obtaining

&(s) = g(s —t)2 (s —1t) +r,

n(s) = E(s—t) +v.

Eliminating the parameter, we obtain the family of parabolas
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1

f—rz ﬁ(n2—v2)7

having vertices along the axis n = 0. These parabolas are traversed from
E=00,m=—00to & =00,n= 00 as s runs from —oo to co and therefore we
can write

Dy =Dy UD2UD, 3
={(&n); §=10<n<1}U{({n); -1<E<Ln=1}
U{(&m); € =—1,-1 <n <0},
D_=D_;UD_,UD_j3
={Emn); £=1,-1<n<0tu{(&n); -1<{<1,n=—-1}
U{(&m); €=-1,0<n <1}

We note that DyND_= {(—1,0)} and 94\ (D;UD_) = {(1,0),(-1,1),(-1,-1)}
are of measure zero, according to general theory.
To identify the measures, we integrate

j/l(narerE@vf)drdv = j(f(lm) — (=1, ))ndn

+ / (F(€.1) — f(€.—1))Ede,
21

so that du is given by

ndn on Dy, FEd§ on Do, —ndn on Dg3,
—ndn on D_;, FEd¢ on D_,, ndn on D_3,

where the integration is to be carried out in the increasing direction of the
variables £ and 7, respectively, and not necessarily according to a given ori-
entation of A.

Integration Along Characteristics in A

Equipped with (10.43) and (10.44) we can continue with our main topic. As
a first step, we show that it is possible to derive analogous representation for
the integral [, w(x)dux,w € X = Li(A, du) without having to resort to the
time domain. We start with the following lemma.

Lemma 10.9. For any T > 0, t4(x) < T for allx € A if and only if t_(x) <
T for all x € A.
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Proof. Let us suppose that ¢4 (x) < T for all x € A. If there exists z € A such
that ¢_(z) > T, then for T' < t < t_(z) we have x = ¢(z,t,0) = p(2z,0,—t) €
A. Moreover ¢(x,0,s) = ¢(¢(z,t,0),0,s) = p(z,t,s) = p(z,t — s5,0) € A for
0 < s < t. This implies t4(x) > ¢t > T. The converse can be proved in the
same way. O

As a next step, we derive representations of f 1 w(x)dp under the additional
assumption that there exists T' > 0 such that every characteristic is finite at
least from one side.

Proposition 10.10. Let us assume that there exists T > 0 such that either
t_(x)<T orty(x)<T forallx e A. If w € X, then we have

t—(y)

Juwtn= [ [ wiety,r.00drduy.. (10.45)

A Dy 0

/wdu = //t+(y ©(y,0,7))drdpuy, . (10.46)

Proof. From Lemma 10.9 we know that the two assumptions ¢4 (x) < T for
all x € A are equivalent. It is clear that if w € X, then w € Li(Xr, dudt) for
any T < oo and, taking T, satisfying the assumption of the proposition, we
obtain from (10.43),

and

t_(y)A t—(y)

/ X)dpx = // / w(p(y,,0)) deuerdt—i—// o(y,7,0))drdpy,
0

0 D,

where the second term at the right-hand side is independent of 7. Because
the formula holds for any sufficiently large T', differentiating with respect to
T we obtain (10.45).

Equation (10.46) can be obtained from (10.44) in a similar way. O

In order to obtain formulae for [ 4, wdp without additional assumptions on
t4(x), we need to introduce new notation. Thus, let us define

Ay = {x € A; ti(x) < o0},
Apoo :={x € A; t1(x) = o0},
Dioo :={y € Dy; t5(y) = +oo}.
Because the functions ¢4 are semicontinuous, the above sets are measurable.
It is easy to see that x € A, if and only if there exist y € Dy and t > 0 such

that x = ¢(y,t,0). Similarly, x € A_ if and only if there exist y € D_ and
t > 0 such that x = ¢(y, 0, t).
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Furthermore x € Ay N A_ if and only if there exist y € D o and ¢t > 0
such that x = ¢(y, t,0), and similarly x € A_ N A if and only if there exist
v € D_ and t > 0 such that x = ¢(y, 0,t).

Now we are able to prove the following result.

Proposition 10.11. Suppose w € L1(A,dp). Then

t—(y)
/ wdp = / / w(p(y,,0))drdpuy, +, (10.47)
Ay Dy 0
t(y)
/wd,u:/ / w(p(y,0,7))drdpuy, —, (10.48)
A
wdp = // o(y,7,0))drduy +, (10.49)
ALNA o Diw 0
wdp = // o(y,0,7))drduy, . (10.50)
A7QA+OQ

Proof. To prove (10.47), let us fix T > 0 and consider the subset A4 of A
defined by Ary = {x € A; t;(x) < T}. Clearly, x € Ap, if and only if
x = ¢(y,7,0), withy € Dy and 0 < 7 < t_(y) A T. Hence, by Proposition
10.10, we have

t_(y)AT
/ U)d/,& = / / UJ(QO(y, T, 0))d7'd,“y,+-
AT+ D+ 0

For positive w the inner integral is increasing with 7" so, by the monotone
convergence theorem, we can take the limit as 7" — oo and obtain (10.47).
Extension to arbitrary w is done by linearity.

To prove (10.49) we consider the set

AT+mAfoo :{XGA; x:<p(y,7,0)vy€D+0070<T<T}'

Applying Proposition 10.10 to this set we obtain

/ wdp = / / o(y,7,0))drdpy +,
Dioo O

AT+ NA_

and, as before, passing to the limit as 7' — oo, we obtain (10.49).
Formulae (10.48) and (10.49) can be obtained in the same way. O
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The last result in this subsection is a formula allowing transfer of functions
between D_ and D,.

Proposition 10.12. If ¢ € L1(D_,du_), then

[ v = [ vlelat@).0)dus (10.51)
D_\D_ Di\D4 oo
Proof. For each 6 > 0, let ws be the function defined on A4 N A_ by

ws(x) = % if 1 (x) +t4(x) >4,
0 otherwise.

Clearly, for each positive 6, ws € L1(Ay N A_,du). If we denote D_ 5 = {y €
D_; ty(y) > ¢}, then (10.47) and (10.49) imply

[ s = / /W)”y O I

ApnA_ S\D—oo D_ s\D_oo

Similarly, denoting Dy s = {y € Dy; t_(y) > d}, from (10.48) and (10.50)

we get
t,(z) t_ ,0
/ ws (%) dpix = / / W@ t-2).0) 44,
0 t—(z)
/1+ﬁ/1, D+,5\D+oo
[ vttt @.0)dus,
Dy 5\D+oo
SO

[ e = [ et a).0)da
D_ s\D—_ Dy s\D+oo

for each § > 0. Passing to the limit as 6 — 0+, we obtain (10.51). O
10.3.2 The Maximal Free Streaming Operator and the Existence
of Traces

The maximal free streaming operator Ay in the present context is defined in
the same way as for A = R3 x R3; that is,

A()f = _XOfa
D(Ag) ={f € Li(A,dp); Xof € Li(A,dp)}, (10.52)

where X is understood in the sense of distributions, as in (10.25). We prove
several properties of Ay in the following sequence of propositions.
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Proposition 10.13. The set C*(A) N D(Ay) is dense in D(Ag) in the graph
norm.

Proof. The proof is similar to part of the proof of Theorem 10.2. If f € D(Ag)
is compactly supported in A, then w, % f € C§°(A) C D(Ap) for ¢ sufficiently
small, and the convergence follows directly from (10.30). If, however, the sup-
port of f is not compact, then we have to use a more subtle approach than in
Theorem 10.2.

It is known (see, e.g., [4, Theorem II11.3.14]) that there exists a locally finite
covering (U;) en of A by open, relatively compact sets, and a corresponding
partition of unity (a;)jen C C§°(A), with suppa; C U; for each j € N. Let
fi == a;f. Then each f; is an element of D(Ap) with a compact support.
Therefore, from the first part, for a fixed § > 0 and for each j, there exists
¥ € C§°(A) such that suppy; C U; and [|[¢; — fi]l p(a,) < 2776. Let us define

9(x) =Y vi(x).
j=1
Because (Uj);en is locally finite, g € C*°(A). Moreover,
g = flipcay) < Z 145 = fillpag) <0
j=1

so that g € D(Ap) and, because § was arbitrary, the proposition is proved.
O

Proposition 10.14. Let f € D(Ap). Then limi_oy f(o(y,t,0)) exists for
almost all'y € Dy. Similarly, lim; o+ f(o(y,0,t)) exists for a.a. y € D_.

Proof. If f € D(Ap), then, according to Proposition 10.13, there exists a
sequence (fi)ken, from C1(A) N D(Ap), such that limy_o fr = f in D(Ap).
This implies, using (10.47), that if k¥ — oo, then

t_(y)
/ i — fldu = / / (0¥, 0)) — Flp(y, . 0)) drdpsy 1+ — 0
Ay D, 0
and

t—(y)

Vo= o i = / / (Ao fi) (@ (¥:7.0))— (Ao f) oy, 7, 0)) | drdpsy, — 0.
* D, 0

Hence, for almost all y € D, we have fr(p(y,-,0)) fe(y,-,0)) in

Ly (]{:(07 t—(Y))’ dt) and (AOfk)(QD(yv R 0)) - (AOf)(QO(Y7 R 0)) in Ll((07 t—(y))’ dt)
as — OQ.
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Let us choose y € D, such that the above properties hold. Then, pass-
ing if necessary to a subsequence, we may suppose that fi(o(y,t,0)) con-
verges pointwise to f(y(y,t,0)) for almost every ¢t € (0,t_(y)). Choose
to € (0,t_(y)) such that

Then for any ¢ € (0,t_(y)) we have
il £,0)) = fulplyto0) = [ (Aafi)(ely.m0))r

Because the right-hand side has a limit as & — oo, changing, if necessary, f
on a set of measure zero, for any ¢t € (0,¢_(y)) we have

leI{:O fk(sp(y7t70)) = f(()o(y7t7 0)),

and

oy, 1,0)) = F((y. 10, 0)) + / (Aof)(p(y. 7. 0))dr.

to

This formula also implies that there exists

Jim ely.0.0) = £ r.t0:0) = [ (Aof) oty 7.0

and it is easy to verify that the right-hand side does not depend on the tg.
The second statement can be proved in the same way. 0O

Proposition 10.14 allows us to define traces. Let f € D(Ap). We define
Tof: Dy — R by

Ty f(y) = lim f(p(yt,0) (10.53)
T f(y) = Jim f(e(y,0,1) (10.54)

for any y € D4 such that the respective limit exists.

Remark 10.15. For a given f € D(Ay), let us consider a sequence (fx)ren C
CY(A) N D(Ap) such that limy_.o fx = f in D(Ap). Then, according to the
previous proof, we have also

T4 f(y) = lim T fi(y),
T-f(y) = lim T_ fi(y)

for almost all y € D4.
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10.3.3 The Streaming Operator with Zero Boundary Conditions
Let us define the family (Zy(¢))¢>0 by the following expression

(Zo(1)f)(x) = {gj (el 0) 1§ ? ;j}f)j(x)’ (10.55)

where f € X. We return here to the operator Af = —Xof — vf and suppose
that the assumptions (A;)—(As) are satisfied. In particular, v € Ly joc(A).
Then we define another family by putting for any f € X,

e~ jot v(p(x,s, s X i (x
e = { ¢ TR ) B ST o)

The next two theorems are the counterparts of Theorems 10.2 and 10.4 for
the case of A with a nonempty boundary.

Theorem 10.16. The family Zy(t) of linear operators defined by (10.55) is a
strongly continuous semigroup on X satisfying

1Zo(@)f1I < [IF1] (10.57)
forall f € X andt > 0.

Proof. Proposition 10.1 implies that for any f € X and ¢t > 0, the function
Zy(t)f : A — Ris measurable. Due to the change in the definition of (Zy(t)):>0
we need some care in proving that it is a semigroup. For this we note that:

1. ¢(x,0,0) = x for all x € A;
2. for any x € A, if s,t > 0 are such that 0 < ¢+ s < t_(x), then 0 < ¢ <
t_(x) —s=t_(p(x,s,0)); hence p(x,t + s,0) = p(p(x,s,0),t,0);
3. for any x € A, if s,¢ > 0 are such that t+s > t_(x), then either ¢ > t_(x),
or t < t_(x) in which case s > t_(x) —t = t_(p(x,%,0)).
From these properties of ¢ we infer that for any f € X and t,s > 0 we
have Zy(0)f = f and Zy(t + s)f = Zo(t)Zo(s)f. Therefore (Zy(t))i>0 is a
semigroup.
Now we prove (10.57). Writing A = A4 U (A- N Ajo0) U (Ao N Apoo),
where the terms are mutually disjoint, we have

/ \Zo(t) flds = / \Zo(t) fldps + / \Zo(t) fldps + / \Zo()ldp.
4 A A_P 4o A ooNMAios

(10.58)
By Proposition 10.11 we can write

y

- (y)
[1z0sin= [ [ 120510070 drduy .
Ay 0

Dy
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ov(t—(y)—t)
= [ [ iletyir+ t0drny .
D, 0
tVt_(y)
= [ [ 1nety.0.00dodny.. < [ 171de
Dy 't i

Because for y € D_, we have t_(¢(y,0,7)) =7, thus (Zy(¢)) f(¢(y,0,7)) =0
for 7 <t and hence

[ zona= [ [ 1205600

A_NAjoo

D_ 0
= [ 11000, ~ t)ardn, -
Dot

-/ 7f|(90(y,0,7))d7duy,= [ 1fidn.
D_o O

A_NAtoo

[ zwna= [ il

A—oomA+oc A—ocmA+OO

Finally

as this case is the same as the whole space case. Combining these three esti-
mates, we obtain (10.57).

Due to (10.57) the argument used to prove strong continuity in Theorem
10.2 can be repeated without any change; hence the proof is complete. O

Theorem 10.17. The family (Z(t))i>0, defined by formulae (10.56), is a
strongly continuous semigroup on X such that

1Z@)fI < [1f1 (10.59)
holds for oll f € X andt > 0.

Proof. Taking into account the properties of functions v and ¢ listed in Propo-
sition 10.1, we immediately see that for any f € X and ¢ > 0 the function
Z(t)f : A — R is measurable. The semigroup property can be obtained as in
the proof of Theorem 10.16. Estimate (10.59) follows from (10.57) by the in-
equality |Z(t) f| < |Zo(t)f]. Finally the strong continuity follows from (10.59)
and the equality lim; o4 fot v(p(x,s,0)ds = 0 for almost all x € A, as in the
proof of Theorem 10.4. O

Now we can characterise the generators of both (Zy(t)):>0 and (Z(t))i>0-
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Theorem 10.18. Semigroup Zy(t) defined by (10.55) is generated by the op-
erator Ag_ defined by

AO—f = A0f7
D(4y) = {f € D(Aq); T_f = 0}. (10.60)

Proof. Let Ty be the generator of the semigroup Zy(t). Combining the consid-
erations contained in the proof of Theorem 10.2 with Proposition 10.13 we ob-
tain that D(Ag_) C D(Tp). Thus we have only to prove that D(Tp) C D(Ao-).
Suppose f € D(Tp). Let us fix A > 0 and define g := (M — Tp)f € X, that is,

t_(x)

100 = [ e gle(x..0)do

0
Because for y € D_ and 0 < ¢t < t4(y) we have t_(¢(y,0,t)) = t, the
representation
t

ewg( (0(¥,0.),0,0))do = / (3, 0,1 — 0))do
0

fle(y,0,1))

Il
o —__

/ M=) g(o(y, 0,7))dT (10.61)
0

holds, so that lim; o4 f(¢(y,0,t)) = 0; that is, T_ f = 0 (see (10.54)).
Next we show that for any 1 € C}(A) we have

[ Aotidu= [ =g+ A
A

A

which implies f € D(Ap) and Agf = Tof. Then our statement is completely
proved. Indeed, by (10.25),

/ Ao fbdy = / F) (A - 9)(x)dyix
A A

- /f(X)(A~3¢)(X)dux+ / F) (A - 0) (x)dpi + / F) (A - 0) (%) dpux.

Ay A_NAyoo A ooNA oo
We can prove, as above, that for y € D, we have

t_(y)
fle(y,t,0)) = / e g(p(y, 7,0))dr;
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hence
t_(y)
/ F() (A - 0) (x)dpix, = / / oy, 0)) (A~ 09) (p(y, 1, 0))dtdy, ¢
A Dy 0
t_(y)t—(y)
= / / / e g(p(y, 7,0)) (A - 0¥)(p(y,t,0))drdtdpuy, ¢
D, 0 t
t—(y) T d
— [ [ setv.no) ( / e-MT-“dtww(y,t,o»dt) drdjiy,+
D, 0 0
t_(y)
— [ [ stetvr (=00 (5.7.0)
Dy O

T

2 [ A0y, 0)dt)drd
0

. / (9(%) — M () (x)dp.

Ay

Similarly, for y € D_ we have, by (10.61),

F(p(y,0,1) = / ) g oy, 0,7))dr,
0

hence

oo

[ 169 00) 60 = [ [ $615.0.0)( A 06) (ol 0,0) ey -

A_NA4oo D_o 0

/ / ( [ gte03.0 T»dr) (A 00)(o(y, 0, )iy,
/ / (y,0,7) (7 e Dy (y,O,t))dt) drdpry.
// (y,0,7) ( o(y,0,7) +/\/ A=y (p(y, 0 t))dt)drduy_

- / (—g(x) + AF (O Vp() .

A_NA4 o



10.3 The Streaming Operator in A ¢ R® x R? 315

Finally we have

/ F) (A - 00) (x)dpas = — / (9(x) — A () (x) s
A coNAyoo A—ooNAyoo

using the same considerations as in the proof of () in Theorem 10.2 because
this case is like the whole space case. Thus, the theorem is proved. O

Remark 10.19. Because the semigroup generated by the operator Ag_ is sub-
stochastic, we have

/Ao_fdu <0 (10.62)
A
for all 0 < f € D(Ap-).

Next we pass to the full streaming operator and define the operator A by
(10.32), as in the case A = R3 x R3. Using the same boundary condition as in
the case of Ay, we define

A_f = Af,
D(A_) ={f € D(A); T_f = 0}. (10.63)

The following theorem holds.

Theorem 10.20. The strongly continuous semigroup (Z(t));>o0 defined by
(10.56) is generated by the operator A_ defined by (10.63).

Proof. Denote by T' the generator of (Z(t));>0. We start by proving D(T') C
D(A_). If f € D(T), then for a given A > 0 we can define g = (A = T)f €
Li(A,dp). Using the resolvent formula (3.16), f can be written as

fx) = / e_fot(’\‘"”(99("7“‘’())))dsg(<p(><,t70))dt7 x € A
0

In particular for x = ¢(y,0,7), y € D_, 0 < 7 < t4(y) we obtain, as in
(10.61),

T

fle(y,0,7)) = /6’f"t(””(‘”(y’s’“o”)dsg(@(y,t —7,0))dt

0
-

- / o J7 (e 0 g (5(y,0,0))do,  (10.64)
0

which yields
T-f(y) = lim f(e(y,0,7)) =0
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for almost all y € D_.
Similarly, for y € Dy and 0 < 7 < t_(y), we obtain

t_(y)—7

oy, 0)) = / e~ S Orviely st roNds gy 4 4 7. 0))dt
0

()~ [dvle(y,s’,0))ds’
:/ Oty 9(p(y.0.0))do,  (10.65)

which gives

ffuw(w(y’s',o»)ds’

t—(y)
Tef(y) = lim f(e(y,7,0)) = /O e 9(¢(y;0,0))do.

Now we show that T, f € L'(Dy,duy) and vf € X by establishing the
estimate

1T fI+ T+ 2 fIE< gl (10.66)

with the equality sign for g > 0.
First, let ¢ > 0. Then f > 0 and

I+ )] = / (A + ) fdu,

A

where both sides are defined, though possibly infinite. As before, we split the
domain of integration into three subdomains so that

/(A—&-V)fduz/(A%—u)fdu—i— / A +v)fdu + / A+v)fdu
A

/1+ A_ﬂ/l+oo A_QCOA+OO
(10.67)
and estimate each integral on the right separately. For the first one we have
JER
Ay

t—(y)t—(y)
:// /()\-i-V(SO(}GS,0)))6_f-:(’\+”(“’(y’a’0)))d”g(cp(y,T,O))dfdsd,uy#
Dy O s

t—(y)

- / / 9((y,7,0)) / A+ v(p(y, 5,0)))e” [ O 00N gsgrqy,,
0

Dy 0

t—(y) -
— [ O+v(p(y,0,0)))do
=/ / (1—6 o )9(90(}"7770))d7—d,uy,+'
0

Dy
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We note that here (and in the calculations below) the changes of variables
and the order of integration are justified by the positivity of integrands in
the sense that if infinity appears somewhere in the chain, then all terms are
infinite.

Because, by (10.47), we can write

t_(y)

/ / 9(@(y,7,0))d7duy,+=/gdu,

D, 0 Ay
and because
e fJ(/\+V(</9(y,(f70)))dUg(SD(y77_7 0)) < g(o(y,7,0)),

we obtain
t_(y)
y — Ty f(y) = / e~ J7 Ot (el e e g oy 7 0))dr € LDy, dps )
0

and hence, by the above calculations, vf is integrable on A, with

Jovsan= [ gau— [ osau.
Now we consider the second integral in (10.67).
(A +v)fdu

A_NAyoo

= / //()\-l-V(@(yyo,S)))e_f:(’\+”(¢(y’o’”)))dog(<p(y,OJ))deSd/Ly,,
0

D_» O

— / /g(sp(y7 07 7—)) /()\ + y(gp(y, 0, 8)))67 f:()\+V(Lp(y’0’g)))d0deTd/Ly7,
D_o O T

= / gdp.
A70A+o@

Finally, for the third term of (10.67) we have

[ o

A oM Al oo

oo

= Qo e O, 1,0) i
A_Qcﬁ/l+oo 0
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[ee]

- / / (A + v(x))e oA rrlebosOdsg(o(x t, 0))dpedt

0 Afmﬂ/L',oo

o0

o B S R

0 Af(x,ﬂ/L',oo

o0

N / / (A + v(p(2,0,8)))e™ Jo At (20 g (7) ity

A—oon/l+oo 0

= / gdpu.
A,ooﬁAH,o

Combining these three estimates we obtain that vf € X and [T} f]| + ||(A +

v)fl = ligll for g > 0.
In the general case, we define

t_(x)
T(x) = / e I3 O eGess0ds g (o, 1, 0)) dt,
0

so that B B
I T4 fI -+ I+ ) FI < NT fI+ T+ ) £ < gl

and (10.66) is proved.
Next we show that for any 1 € C}(A) we have

/(Aof —vf)dp = /(—g + Af)pdu, (10.68)

A A

which, together with vf € X, imply f € D(A) and Tf C Af. As before, to
show (10.68), we split the domain of integration by writing

/ (Aof — vf ey — / FOO((A- 96)(%) — v(x)i(x) b
A
/ FO((A - 9)(x) — v(x)(x))dp

4 / FE)((A - 01)(x) — p(x)1(x))dis

A_NAsoo

+ / (A 09)(x) — p()1() e

Af(x,ﬁ/LFoo
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To evaluate the first term, we use the representation (10.65), that is,

t—(y)

f‘((p(y7 t, 0)) — / e~ f:()x-‘ru(tp(y,s,0)))clsg((p(y7 T, 0))(17’,
t

to obtain
/ F) (A 00) (%) — w(x)0())dps

t—(y)
= [ ] e 00406~ )l 0ty
Dy 0
t—(y)t—(y)
:/ / /e_ ff(A+u(cp(y,s,0)))dsg(@(y, 7,0))(A- 0 —v)(p(y,t,0))drdtduy +
D, 0t

t—(y)

- [ g(w(y,T,O))/T 0L (e O oy, 1,0)) didrdy. 4
D, 0 0
t—(y)

=[] stety.ron (—wwy,no»

Dy 0

+A / e ftT(’\+”(¢(y’s’0)))db’¢(g@(y,t,0))dt> drdpuy,
0

— [ (=90) + AF GO x)de
Ay
Using analogous representation

t

fle(y,0,1)) = /6’ [: Ot 0. dag (o (y, 0, 7)) dr

0

for y € D_, we obtain

FE((A-09) (%) — v(x)1(x))dpix

A_NAso

= / /f(so(y,OJ))(A-@w—mp)(ga(y,o,t))dtduy,,
~ 0
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&) t
= / /(A ~ W—Wb)(w(y,0,t))/e‘f:”*”(“’(y’o’s”)dsg(w(y,O,T))detduy,-
D_,0 0
_ A=) L (= [ up(y.0,9))ds
= 9(e(y,0,7) [ e = (e Glply,0,1)))dtdrdpy,
D_» 0 T
= / /g(w(Y7077—)) _¢(80(y7077))
D... 0

oo

+>\/e_f:(/\+”(“’(y’0’s)))ds1/z(<p(y,07t))dt drdpy, -

- / (—g(x) + A (O () .

A_NAy o0

Finally, as in the proof of Theorem 10.2(y) we obtain

FE((A-09) (%) —v(x)h(x))dpe = / (=9(x) +AS (%)) (x)dpix.-

A—oomA«}»oo A,ooﬂ/LHx)

These calculations yield that for f € D(T) we have Af = —g + Af and,
because we have previously proved that T_f = 0, we see that f € D(A_)
so that D(T) € D(A_). However, Ag_ is dissipative by Theorem 10.18 and
because multiplication by —v is also dissipative, we obtain dissipativity of A_.
Hence applying Proposition 2.2, as at the end of the proof of Theorem 10.4,
givesT=A_. O

Remark 10.21. Using (A\[—Ag+v)f = g for f € D(A_) we can rewrite (10.66)
as

/Aofdu = / Ty fdus, f€ D(A_). (10.69)
A D,

In fact, for a nonnegative g, this follows directly from (10.66) as the norms
are then given by respective integrals and for arbitrary ¢g (and thus arbitrary
f) we use linearity of (10.69) and the representation g = g4 — g—.

A more general version of this formula is given in Corollary 10.44.

10.4 Initial Boundary Value Problems for the Full
Transport Operator

In this section we return to the analysis of the full operator A + B.
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10.4.1 Preliminaries

Let us start with the case 4 = R? x R? and consider the initial value problem
for the full transport operator (10.7) written in an abstract form as

of=Af+ Bf, onAdx(0,00),
f(0) = fo, on 4, (10.70)

where A is the streaming operator defined by (10.32). Theorem 10.4 and the
Bounded Perturbation Theorem, Theorem 4.9, yield the following result.

Theorem 10.22. If B is a bounded linear operator in X, then the operator
K = A+ B generates a Co-semigroup (G (t))i>0. Moreover, if B > 0 and

/(fuerBf)d,uSO

A
for all0 < f € D(A), then (Gk(t))i>0 s a substochastic semigroup.

If A ¢ R3?x R3, then we consider the initial boundary value problem for
Eq. (10.7) which can be written in an abstract form as

0if = Af + Bf, onAx (0,00),
f£(0) = fo, on A,
T_f =0, on D_ x (0,00). (10.71)

We recall that in Theorem 10.20 we proved that the generator of the streaming
semigroup associated with the initial boundary value problem is the operator
A_ defined in (10.63). A_ is the restriction of the maximal operator A to
functions f € D(A) satisfying the boundary condition T_ f = 0. As above, we
immediately have the following theorem.

Theorem 10.23. If the operator B is bounded, then the operator K_ = A_ +
B generates a Co-semigroup (Gg_(t))i>o0. Moreover, if B > 0, and

/(—uf+Bf)du§O

A
for all0 < f € D(A), then (Gk_(t))i>0 is a substochastic semigroup.

Ezxample 10.24. The operator B is bounded, for instance, in the case of soft
collisions; see (10.14).

Clearly, our main interest is when the operator B is unbounded. The basic
lemma which allows honesty proofs for both Maxwell-Boltzmann and semicon-
ductor problems in this case is given in the next subsection. It is an analogue
of Lemmas 9.11 and 9.30 of the fragmentation problems.
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10.4.2 Crucial Lemma

To proceed, we have to adopt additional assumptions. Throughout the re-
mainder of this chapter we consider the case A = A, x R?, where A, = R3 or
A = 2 C R? is an open set with a piecewise C! boundary. Moreover,

(A4) there exists a positive constant C' such that for any (r,v) € A,

Fv) o <o, (10.72)
m

(As) for any V' > 0 there is M < oo such that for a.a. r € Ay, |[v| <V,

vir,v) < M. (10.73)

Let us note that for both A and A_ their resolvent is given by the same
formula: for A > 0 and g € X we have

t_(x)
Laglx) = / e I O eles s g (o, 1, 0)) dt (10.74)
0

with ¢_(x) = oo for all x if A =R3 x R3.
Following the method of Section 6.3, we denote by L the extension of the
operator L; by monotonic limits; see (6.38). It follows that the domain F of

this extension is the subset of Ef of measurable and finite a.e. functions for

which
t_(x)

Lox) = [ e liviebesoisg o to)ar, (10.75)
0

defines a function from X. By B we denote the extension of the operator B
defined by (6.37). It is also given by the same integral expression as B.
For an arbitrary v > 0 we denote

Ay ={(r,v) € 4; |v|] <v}.

All the constructions carried out in Subsection 10.3.1 for A can be repeated
here for A,,. Thusif x € A,, then (—t, —(x),t, +(x)) is the maximal s-interval
for which point ¢(x, 0, s) lies in A,. Furthermore, we define

Dy 4 ={y € 0Ay; y = 0(x,0,t, (%)), x € Ay, ty 4+ (x) < 00},
Dv,— = {y €0y y = QO(X’ 0, 7t1,7_(X)),X S Avvtv,—(x) < OO}»
and denote by dp,, + the corresponding surface measures on D, + defined in

Lemma 10.5.
After these preliminaries we can prove the following important lemma.
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Lemma 10.25. Let g € F .

1. We have T_(Lg) = 0 almost everywhere on D_ and T'y (Lg) ezists (possibly
infinite) almost everywhere on D .
2. If T (Lg) € L1(D4,dps), then g € L1(Ay, dp) for any v > 0.

Proof. We begin by observing that because g is measurable, the function
(x,t) — g(e(x,t,0)) is defined for almost all x € A and t € (—t4(x),t_(x)) by
Proposition 10.1. Because the characteristics fill A up to a set of measure zero,
for almost every x the function ¢t — g(p(x,t,0)) is defined almost everywhere
on (—t4(x),t_(x)). Let us find the values of Lg along such a characteristic.
Using only the properties of ¢ we obtain, as in (10.65)

Lg(@(x7 2 0)) =

t—(x)—t
/ e~ Jo rlelattsONds g (o, ¢+ 7,0))dr

0
)

t_(x

[ ettt omisg o x, . 0))dr (10.76)

t

. t—(x)
.[()‘+V( (x,5,0)))ds t
= 0 ’ / e_fo()‘+”(‘p(x’s’0)))dsg(50(x’T’ 0))dr

t

This shows that for almost all x € A
e f&(/\+V(<p(x,s70)))dsg((p(x7 7,0))

is integrable over any interval (¢,t_(x)) with —t,(x) < t < t_(x) and thus
Lg is absolutely continuous along almost every characteristic. To proceed, we
return to the proof of Theorem 10.20 and observe that the change of variables
in (10.64) involves only operations along characteristics, and so, by the above
comments, we have

T_(Lg)(y)=0

for almost any y € D_.

To prove the existence of T (Lg)(y) for almost any y € D, we note that
(10.76) corresponds to (10.65) and therefore to obtain T (Lg)(y) we have to
take the limit of (10.76) as t — 01. However, because v is locally integrable,
for almost every y € D+ we have

lim efo Atrle(y:s,0)))ds _
t—0+

and the limit of

t—(y)
e~ JoOtrlely sy oy, 7,0))dr
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as t — 0T exists (possibly infinite), by the monotone convergence theorem.
This ends the proof of point 1.

To simplify the notation in the second part, we drop the notation T4 of
the traces. We note that by assumption (As) the function v is bounded on A,
and thus

/((1 + v)Lg)du < +o0.
Ay
Returning to the proof of Theorem 10.20 we can retrace all the calculations

leading to (10.66) for positive g as they only involve changing the order of
integration and changing variables along the characteristics. Thus we obtain

/(1+V)Lgd,u+ / Lgduv,Jr:/gd,u—i— / Lgdpe,,— (10.77)

Ay D, + Ay D, -

under the provision that some terms may be infinite. We note that the traces
are well defined because new components of the boundary of A, lie inside A
and from part 1, we know that Lg is continuous along almost any character-
istic.
Next, let us define

D;, . ={(r,v) € Dy; |v| < v},

Dy ={(x,v)e A re 2 |v|]=vF(r,v) v=0}
where the condition in the definition of Dy , follows from Remark 10.7 as

v = vw = vn, where n is the unit outward normal at the surface of the ball
|v| < v and w € S? is a vector on the unit sphere S2. Then we write

Y ”
DUd: - Dv,:l: U v,+

so that D;, , C Dy and (10.77) can be written as

Jasotgius [ ot [ Lodno = [gnr [ todu-. 0019
Ay D

D"

Au Dyt vt -

where we used Lg =0 on D_.
Next we estimate fDU,+ Lgdpiy, 4. Because Dy, , C Dy,

/ Lgdpo,+ < / Lgdpy < oo
Diy,+ Dy

by assumption. For the second part of D, y, we note that the measure on
{v € R3; |v| = v} is given by v2dw, where dw is the surface measure on the
unit sphere S?. By Remark 10.7 the measure dpu,, 4 on D;)”Jr is given by
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2 2

F F
dpy,+ = v°— - wdwdr = v°— - ndwdr
m m

and assumption F(r,v) - v < C|v| implies F(r, vw) - w < C, hence

F
/ Lgduy, + = UQ/ / Lg(r,vw)M - wdwdr
m

D"

- 2 {weS%; F-w>0}

< C'v? / / Lg(r, vw)dwdr, (10.79)
Q 52
for some C”. Because 0 < Lg € L1(A, dp), v* [, [, Lg(r, vw)drdw is a positive

function of v, which is integrable on [0,4o0c). By the Fubini theorem we see
that

v-—>‘/)Lgdum+
D{ijr

is finite for almost any v € [0, 00). This shows that for almost every v,

/gdu < 00, (10.80)
Ay

and
Lgdpt,,— < oo. (10.81)
DI _

Because for any v’ we can find v > v’ (so that 4, C A,) for which (10.80) is
satisfied and because g is nonnegative, we have [, gdu < oo for any v. O

Corollary 10.26. There exists a sequence (Un)nen converging to infinity such
that
lim Lgdiiy, + = 0. (10.82)
n—oo

"
Dvny+

Moreover, (Un)nen can be selected to satisfy vy, € [n,n+1) and

Lgdpty, ,— < +oo0.

"
Un,—

Proof. We note that by (10.78) and (10.81) we have

/LWM¢<+m

"
DY+
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for almost all v € [0, 00) so in all considerations that follow we can assume that
the selected v is such that both boundary integrals are finite. We denote by
Iy the subset of [0, 00) for which (10.78) holds with finite boundary integrals.

The first part follows exactly as in the proof of Theorem 9.26; hence we fo-
cus on showing that the sequence (v, )nen can be selected to have the required
property. Let us denote I, = [n,n 4+ 1) N Iy and

h(v) = / Lgdpiy +.

Dy .
It is clear that for any e there are only a finite number of sets I,, for which
h(v) > €, otherwise h would not be integrable as I,,s are of unit length. Thus
for any e, there is N. € N such that for each n > N, there is &, € I,, for which
h(&,) < e. Therefore we can construct an increasing sequence (Nj)ren such
that for each n > Ny there is ¢¥ € I, satisfying h(¢¥) < 1/k. We construct
the sequence (v,,)nen by defining v, = && for Ny <n < Niyy and k > 1. For
indices n < N7 we put v,, = 1. This is clearly an increasing sequence diverging
to infinity as n — oo such that h(v,) — 0. In fact, for any € > 0, if € > 1/k,
then, by construction, 0 < h(v,) < 1/k < € whenever n > Nj. O

Remark 10.27. In particular, for the case when

v <0, (10.83)

which includes, for example, the Lorentz force, we have

"
Dv,+ = ®7

and (10.78) can be written as

/(1+V)Lgdu+ / Lgdps, + :/gd,u—f— / Lgdps,,— (10.84)

Au DI A, DI _

from which it follows that fD,, Lgdp,,— < oo for any v.

10.4.3 Well-posedness of the Maxwell-Boltzmann Equation

In this subsection we specify B to be an integral operator described in Sub-
section 10.1.2. Specifically, we adopt the following assumptions.

(Ag) The operator B is an integral operator

(Bf)(r,v) = /k(r,v,v’)f(r,v')dv’, (10.85)

R3
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where the collision kernel k is a measurable and nonnegative real-valued
function defined on A x R3 such that

/k(r,v’,v)dv’ =v(r,v) (10.86)
]R3

for almost all (r,v) € A.

Our interest here lies with unbounded operators B and thus unbounded colli-
sion frequencies v. By Subsection 10.1.2, such collision operators occur when
the interactions are given by the power law potentials with v > 0 and by rigid
spheres interactions.

Due to (10.86), the operator B is well defined on

D(B):={feX; vfeX} (10.87)

By Theorems 10.4 and 10.20 we have D(B) C D(A) when A, = R3 and
D(B) € D(A_) when A, = §2. Thus we can list the properties of A and
B, which allow us to use the theory of substochastic semigroups. In the case
A, = R3 we have:
1. (A, D(A)) generates a substochastic semigroup, D(B) 2 D(A) and Bf >
0 for 0 < f € D(A);
2. for all 0 < f € D(A),
/ (Af + Bf)dp =0, (10.88)
A

where (10.88) follows from A = Ay — v, (10.31) and (10.86).
Similarly, for A, = {2, the results of the previous section and, in particular,
(10.69), ensure that the following properties hold.

1. (A_,D(A_)) generates a substochastic semigroup, D(B) 2 D(A_) and
Bf>0for0< fe D(A_);
2. Forall 0 < fe D(A-)

/ (A_f+Bf)du = — / T, fdp,. (10.89)
A Dy
From the general theory (see Corollary 5.17) we obtain the existence of sub-
stochastic semigroups (Gk(t))i>0 and (Gk_(t))i>0 generated by extensions,
respectively, K of A+ B and K_ of A_ + B.
The next theorem shows that under an additional assumption, both semi-
groups are honest. This assumption reads:

(A7) there exists C' > 0 such that for any fixed V' > 0,
k(r,v',v)dv' < C (10.90)
v |2V

for almost all r € A, and |v| < V.
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Then we can prove the following theorem.
Theorem 10.28. Assume that assumptions (A1) —(Az7) are satisfied. Then,

(i) if Ay =R3, then K = A+ B and (Gk(t))i>0 is honest;
(i1) if Ay = 02, then K_ = A_ + B and (Gg_(t))i>0 s honest.

Proof. To prove this theorem we use Theorem 6.22. Thus we fix arbitrary
g € Fy such that —g + BLg € L1(4,du) and ¢(Lg) = fD+ T Lgduy < +o0
(see (10.89)). The latter condition is void if A, = R3.

By Lemma 10.25 we can select a sequence (v, )neny which converges to
infinity and for which

n—oo

1"
Dyt

lim / Lgdpy =0, (10.91)

where here and below we use the notation introduced before the lemma. Using
—g+BlLg,Lg € L1(4,du) we can write

/(Lg — g+ Blg)du = lim / (Lg — g + BLg)dp.
A A

n

Let kp(r,v) := flv’\<vn k(r,v',v)dv' and k,(r,v) = v(r,v) — kn(r,Vv), then

/ BLg(x)djix = / / / k(r,v,v')Lg(r,v')dv'dvdr

Ao Ar [v|<v, B3
://Lg(r,v) / k(r,v',v)dv'dvdr > /(V(x)—,«;n(x))Lg(x)dux
Ar R3 v/ |<vn, Avy,
so that

[ to=g+Bloau= [ (w+Dlg—g- ko) du:

A A’Un

Un

Using (10.77), we obtain,

/ (Lg — g +BLg)du > — / Lgdpy — / knLgdp
on . -

> —c(Lg) — / Lgdpy — / KknLgdp,

D"

vn,+ vn

with ¢(Lg) = 0 if A, = R3. Because 0 < x,, < C on A,, by (10.90) and
Lg € Li(A, du), we have
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lim knlLgdp = 0.

n—oo

AU‘VL

Taking into account (10.91), we obtain [,(Lg — g + BLg)du > —c(Lg) which
completes the proof. 0O

Ezample 10.29. Assumption (Ag) is satisfied for rigid spheres and for hard
potentials with an angular cut off discussed in Section 10.1.2 (see also, e.g.,
[135]). Assume, for simplicity, that the kernel k is independent of r. Then

o (U/Q B ,U2) 2
E(v,v) < ———ex v—v|+er—m—t 10.92
Vo< S p< g (Vv =20) ) o
for some constants ¢, c’, and §, with ¢ > 1. We take v to have the direction
of the versor ez and defining u = v/ — v, we have v' = |u + v| so v? =

u? +v2+2uv cos ¢, where ¢ € [0, 7] is the angle between u and v with v = ves.
Denote further s = 2cv cos ¢, then s € [—2cv, 2¢v], ds = —2cv sin ¢pd¢, and

2
dv' = wldusin ¢ dpdd = — ——du ds df.
2cv

With the same change of variables we have v'? — v? = u? + su/c. Let us fix
V > 0. Following (10.90) we take v <V and v' > V, hence u > 0 satisfies

5\2 s\2 9 9
—) > (=) = Vve.
(u—|— 20) - (20) v

The right-hand side is positive for any s, therefore u > uy (s) where

s 5\ 2
Uv(S):—QC+\/V2—’U2+(20) .

Thus
2cv
/ k(v v)dv' <7T— / / e (et D)uts)®/260,2 3y, g
[v/|>V —2cv wy (s)

Now if we let 0 = (¢ + 1)u+ s, then u = (6 — s)/(c+ 1) and

2cv
/ k(v',v)dv' < c—|—1 / / o—s)e ? 1% 4ods
VsV R

with

gv(s) = 5 T (c+ 1)\/V2 — 02+ (2%)2
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Because ¢ > 1, clearly gy (s) > 0 for s > 0. However, because V? > v?, we
have

s\2 _ (e—=1)s s
- M/V2—v2+ () > 1 ‘7‘>
gv (s) 5e et )\/V v +(20> z g Tl g0

for s < 0 as well. In particular, gy (s) > gy (—s) for any s > 0, gy (—s) > s/c
and gy (s) — gv(—s) = s(c — 1)/c. Using these estimates, we can write

2cv o]
/ /(J - 8)6702/26d0d5
—2cv gy (s)
2cv, o] 00
:/ /(a + 5)602/25610' +/ (0 — s)efaz/z‘sda ds
0 \gv(—s) gv (s)
2cv oo 2cv  gv(s)
<2 / /06_02/26d0d8 + / s / 6_02/26d0'd8
0 s/c 0 gv(—s)
1 2cv
< dchv + S / s2e75" /2% g5 < 4edv(1 4 clec —1)e™ ),
c
0

where we used ze™® < e~!. Hence, we obtain

47§
su k(v ,v)dv < ————(1+¢(c—1)e 1.
s [ K < T e e

10.4.4 The Semiconductor Equation

As in the case of the Maxwell-Boltzmann equation, we assume that the phase
space /A is given by
A=A, x R,

where either A, = R3 or A, = {2 where {2 is an open subset of R® with
nonempty piecewise differentiable boundary. We also assume that the assump-
tions (A1)—(As) are satisfied.

As we are mainly interested in the mathematical aspects of the problem,
we use nondimensional and normalized quantities; that is, we consider (10.16)
with the kernel S rewritten in the form

S(r,k,kK) = Gi(r,k k) (ad(e(k) —e(k) + 1) + 6(e(K) — e(k) — 1))
6o (r, k, K)o (e(K) — £(k)), (10.93)

where
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a>1

is a constant. Functions G; and Gy are assumed to be continuous on A, x R3 x
R3. Because in the discussion of the scattering operator the space variable r
is irrelevant, we drop it from the notation. By the standard physical argu-
ment, we assume that both functions depend only on scalar quantities and
are symmetric with respect to the incoming and outgoing particles; that is,

Gilk, k) =G;(k* k? w-w') =Gi(K?* kK w-w'), i=0,1, (10.94)

for some function G;, where, as usual, for any vector quantity b we put b = |b|
and w,w’ € S2. With this convention we have b = bw.
The electron energy ¢ is taken to be

k2

e(k) 5

(10.95)
As the function k¥ — (k) is invertible on R, all the compositions of the delta
function in (10.93) are well defined, at least for continuous functions (see, e.g.,
[36]). In particular, the action of the Dirac delta d(e(k’) — ) on a continuous
function f can be calculated as

<BE)=B). FK)>= [ 7050 =Bk = HEDE) [ Fi)a
(10.96)
where 8 € R, f(k) = f(k,w), D(¢) = v/2¢ is the Jacobian of the transfor-
mation (10.95) and H is the Heaviside function, so that the right-hand side
is nonzero only for positive 3. Because for f € L;(R3) the right-hand side is
defined for almost any § € [0,00), we can take (10.96) as the definition of
<6(e(k’) — B), f(k')> for integrable functions.
In many cases it will be more convenient to work with the collision operator
C written in terms of the energy variable € and w in a form which does not
involve the Dirac distribution. Thus, for ¢ = 0,1 we denote G;(¢,e’,w - w') =
Gi(k?, k? w - ') and u(e,w) = f(kw) = f(k), where ¢,&’ are related to
k, k', respectively, by Eq. (10.95), and use (10.96) to make the notation more
compact by defining

g(e,w-w') =Gi(e,e — Lw ). (10.97)

Then Gi(g,e+ 1w -w') =Gi(e+1,6,w-w') = g(e+1,w-w’). Furthermore,
we define h(e,w - w') = Gy(g,¢,w - w'). Moreover, because we mostly use
the e variable, by (10.96), we work in the weighted space X = L;(R4 x
S2, D(¢)dedw). Clearly, all properties of C' proved in X are valid for the
corresponding realization of C in terms of variable k in the space L;(R?) so
we sometimes swap these two descriptions and use the form which is most
convenient. Where it not lead to misunderstanding, we keep the same names
of operators for both descriptions.
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In this subsection we use realizations of the collision operator on various
domains so we need a more specific notation than for the Maxwell-Boltzmann
equation. We start with the formal expressions C and B defining, respectively,
the operators C' and B. Using (10.20), (10.21), (10.96), and (10.97) we find

(Cu)(e,w) = —v(e,w)ule,w) + (Bu) (e, w), (10.98)
where
vie,w)= | D(e+1) /g(s +1,w-w)dw' (10.99)
g2
+aH(e—1)D(e —1) [ g(c,w - w')dw' + D(e) | h(e,w - w')dw’
/ /
(Bu)(e,w) = aD(5+1)/g(E + 1w wu(e + 1,w')dw’ (10.100)
S2
+H(e—1)D(e— 1)/9(5, w - wule—1, w')dw’+D(e)/h(s, w - wu(e, w)dw'
g2 52

Let us return to dependence of the coefficients of the collision operator on
r and recall that A = A, x R3, where A, is either R? or a proper subset of it.
We recall that X = Ly (A, du).

The natural domain of the multiplication operator v is

D,={feX: vfeX} (10.101)

It is a standard result, [25, 31, 35] (see also Proposition 11.5) that under the
above assumptions we have

/ (=0 (e, K) £ (r, k) + (Bf)(r, K))drdk = 0, (10.102)
RG

for f € D,. Because the integral operator is positive, we obtain, in particular,
that for arbitrary f € D,,

1Bfllx < lwfllx, (10.103)

and hence we define the operator B as the realization of the integral expression
(10.20) (or equivalently (10.100)) on the domain

D(B) =D,;

that is, Bf = Bf for f € D(B).
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We concern ourselves with solving either the initial value problem (10.70),
or the initial boundary value problem (10.71) for the operator B defined
through (10.100). It is clear that v, defined by (10.99), satisfies (A5). Thus the
streaming operators, A defined by (10.32) and A_ defined by (10.63), generate
substochastic semigroups in, respectively, L1(R? x R3) and L;(§2 x R3) (see
Theorems 10.4 and 10.20). Because D,, C D(A) (resp., D(A_)), we can repeat
the argument from the beginning of Subsection 10.4.3 leading, in particular,
to Egs. (10.88) and (10.89). Hence we can use Corollary 5.17 to obtain the
existence of substochastic semigroups (G (t))i>0 and (Gg_(t))i>0 generated
by, respectively, extensions K of A+ B and K_ of A_ + B.

In the remainder of this section we discuss honesty, dishonesty, and the
existence of multiple solutions for the semiconductor equations. The results
concerning honesty and dishonesty are based on [17, 69] where they are proved
under slightly more general assumptions. Multiple solutions were analysed in
[37]. However, the results presented here are far from optimal and can be
extended in various directions.

Honesty

Because in the semiconductor model we have to consider the behaviour of
solutions on spheres which are manifolds of lower dimension, the results are
not as neat as in the previous case. We introduce one more assumption which
plays the role of the growth assumption (A7) of the collision kernel k. Here,
the growth of v is controlled by the function g defined in (10.97). Without
loss of generality, we can assume that g is strictly positive. For any n > 1, let
us define

M, = sup{g(r,e, 2); rcRn<e<n+1,-1<2<1}
m, = inf{g(r,e,2); re R}  n<e<n+1,-1<z<1}. (10.104)

Then we introduce two alternative assumptions.

(ASa)
=1
Y — =, (10.105)
n=1 niMn
where
o 2 1 2
M, ::sup{g(r,e,z); rER?’,% <e< (n—; ) +1,-1<2< 1}.
(Asp)
E(r,k) - k<0, (10.106)

and there exists ¢ < 1 such that for all sufficently large n

M, < qam,_1. (10.107)
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Ezample 10.30. Condition (10.105) allows, for example, for a constant func-
tion g which gives rise to an unbounded collision operator. Such a g is used
to model silicon semiconductors.

As we mentioned in Remark 10.27, condition (10.106) (with equality sign)
is satisfied, for instance, by the most common, in this context, Lorentz force.
In general, this condition means that the external force is not accelerating.
Clearly, (10.106) is stronger that (As).

On the other hand, (10.107) allows the collision frequencies to grow mono-
tonically even as of with a < /a, however, may fail if the collision frequency
oscillates too rapidly between subsequent energy intervals.

Another way of interpreting (10.107) is to assume that v(r,ew) can be
written as

v(r,ew) = vi(e) + va(r, cw), (10.108)

where v5(r,cw) = o(vi(g)) uniformly in r € R3 and w € S?. In this case,
(10.107) is fully determined by the behaviour of the leading term v; and if the
latter is monotonically increasing, then it is satisfied if v1(n —1)/1(n+1) >
1/qa for some g < 1 for sufficiently large 7. In particular, (10.107) is satisfied
if 1 is a polynomial.

Theorem 10.31. Assume that assumptions (A1)—A4), (As), (Ag) and either
(Asga) or (Asp) are satisfied. Then,

(i) if Ay =R3, then K = A+ B and (Gk(t))i>0 is honest;
(11) if Ay = 02, then K_ = A_ + B and (Gg_(t))i>0 s honest.

Proof. The proof begins exactly like that of Theorem 10.28 and the first part
is common to both (As,) and (Asp). To use Theorem 6.22, we fix arbitrary
f € Ly such that —f + BLf € X and such that ¢(Lf) = fD+T+Lfdu+ < 400
(see (10.89); this condition is void if A, = R?).

By Corollary 10.26 we can select a sequence (vUp)nen, 7 < v, < n+ 1
which converges to infinity and for which

im [ Lfdp, s =0,

n—o0

"
Dvn1+

where here and below we use the notation introduced before and in Lemma
10.25. Using —f + BLf,Lf € L1(A,du) we can write

A

Js s +BLpdn=tim [ (s~ 5+ BLAR
A,

To further simplify the considerations, we rewrite the above equality using
the energy variable and the set

An = {(r7€7w) € A; e< nn} = Avn;
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that is, we put 7, = v2/2 and thus n?/2 <n, < (n+ 1)?/2. We also denote
u(r,e,w) = f(r,v).
By Lemma 10.25, u € L1(A4,,), so BLu has the same property; that is,
/(BLu)(r,e,w)D(e)dedwdr < 00
Ap
and we can write
/ (—u(r,e,w) + (Lu)(r,e,w) + (BLu)(r, e, w)) D(e)dedwdr =

Ay

- /u(r,e,w)D(z—:)dedwdr—l—/(Lu)(r,s,w)D(s)dsdwdr

Ay Ap
+ / (BLu)(r, e, w)D(e)dedwdr.
A”n,

Using (10.100) we find

/ (BLu)(r, £, w) D(e)dedwdr — / V(r, 2, ) (L) (r, w) D()dzdwdr + b,

n Ay
(10.109)
where

Nn+1
b, = a/ / / D(e — 1)g(r,e,w - w')D(e)(Lu)(r, e, w)dw’dedwdr
R3 S2x52 nMn
Nn+1
—/ / / D(e)g(r,e,w - w')D(e — 1)(Lu)(r,e — 1, w’)dw’dedwdr.
R3 S2x82 nn
Hence
/ (—u(r,e,w) + (Lu)(r,e,w) + (BLu)(r, e, w)) D(e)dedwdr =
Ap
— / u(r, e, w)D(e)dedwdr + /[1 + v(r,e,w)](Lu)(r, e, w)D(e)dedwdr + b,,.
Ay Ap

Returning to the previous notation and again taking Lemma 10.25 into ac-
count we obtain

[rareeina= - [ du,ev [ Ldo,-

D"

vn vn,+ vn,—

- / Lfdfi, o + b. (10.110)

"
Dvnd»
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The first integral on the right-hand side converges to ¢(Lf), whereas the third
converges to zero by Corollary 10.26 and the second is finite and positive due
to the choice of (vy,)nen. Thus the sequence

Bo)men = | b+ / Lfdpe,
D’/J,"” neN

converges to b, say, and we have to show that b > 0. Assume the contrary,

that is, let b < 0. Then, by nonnegativity of the integrals in the definition of

(by)nen, we must have b, < —b for some b > 0 and all sufficiently large n.
Introducing the notation

TI"L+1
Cn:47r/ // D(e)(Lu)(r, e, w)dedwdr,
R3 /52 Jy,

Mnt1
Cn = 47r/ / / D(e — 1)(Lu)(r,e — 1,w)dedwdr, (10.111)
R3 Js2 Jy,

and using our assumption on b,,, for some ny we have
—b>aD(n, — 1)my,, C, — D(nn + 1)M,), cp, (10.112)

for all n > ng.
Here we split the proof and now deal with the assumption (Ag,). First we
observe that -
> en <2|Luf < +o0. (10.113)
n=ngo
In fact, because (n+1)%/2+1 < (n+2)?/2, at most two subsequent intervals

[y N + 1) and [9y41, Mnt1 + 1) can overlap.
On the other hand, because aD(n, — 1)m,,C, > 0, from (10.112) we

obtain
b b

Cn 2 > —
D(np + 1) My, (n+1)2+2M,

which, by assumption (10.105), contradicts (10.113).

Next we consider assumption (Agp). By Remark 10.27 we can take 1, = n,
b,, = b, and note that in (10.111) we have C,, = ¢, 1. Thus (10.112) becomes
the recurrence

by > aD(n — 1)mpcpi1 — D(n+ 1) M,cp,.

Following the argument after (10.110), we assume that for some b > 0 and ng
we have b, < —b for all n > ng. Let us denote 8 = D(ng+k+1)Mpq4k, ai =
aD(ng — 2+ k)mp,—1+k and vk = cpy+r. Hence, for all k£ > 0 we must have
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Bk

k41 Qf41

Ve+1 < — V-

By induction we see that vy, is dominated by the solutions of the corresponding
difference equation so that, as in (7.31), we obtain that for k£ > 1,

k1
Br—i Bi Ay
-]+ H - —=bAk+v0Br = By~ bek +%),

where we put HZ 1 = 1. Now, if limy_.o Ar/Byx = oo, then v; will eventu-
ally become negative which contradicts the nonnegativity of D(e)(Lu)(r,e,w)
which implies that lim,, .~ b, > 0 and the theorem is proved.

Because Ay /By = ﬁo_l ;:01 Hﬁzl a;/B; we see that limy_,oo Ag/Br = 00
if and only if the series with the general term

H no + 1= 2)Mpgti—1 . aD(ng — 1)my,
D(ng + 1+ 1) My, D(no +2)Mpy11

diverges. From assumptions (Asgp) we infer that M,,,1; < gamp,4;—1 for some
q < 1, sufficiently large ng and all [ > 1. Because limy_,o. D(k — 3)/D(k) =
we can find ¢’ > 1 such that for a sufficiently large ng and all [ > 1,

aD(no+1—2)mpg41-1

>q >1,
D(n0+l+ ) no+l1

which shows that Y ;°, C; = oo. Thus

/k‘f‘FLf%fBLﬂdMEi*de)

A

and the theorem is proved. 0O

Remark 10.32. We observe that a relatively strong assumption (As,), with its
somewhat awkward notation, follows from the fact that the sequence (v, )nen
is uniformly distributed with respect to the velocity variable v, whereas jumps
in the collision operator occur every one unit of the energy variable. Unfortu-
nately, under assumption (Ay), this discrepancy seems to be difficult to avoid
because, if we write (10.79) in terms of the energy variable e, then the right-
hand side is multiplied by ¢ and thus it may not be integrable with respect
to de, as the proper measure coming from the sixfold integral in this case is
\/ede. This observation leads, however, to the conclusion that if we impose a
stronger condition on the field:

E(r,k) k<C

for some constant C, then the right-hand side of (10.79) will only be multiplied
by v, thus yielding integrability with respect to €. In this case, following
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the argument of Corollary 10.26, we can find the ‘energy sequence’ (9,)nen
satisfying 7, € [n,n + 1) and such that

/ Lgdpiy, + — 0

"
DnnHr

as n — 00. Using this sequence in the proof of Theorem 10.31 we can weaken
assumption (As,) by requiring that only

|
Y ——= =0, (10.114)
n=1 \/ﬁMTL

where

M, = sup{g(r,e,2); reR3 n<e<n+2-1<z<1}.

Dishonesty

Our next step is to discuss the possibility of the existence of a dishonest

semigroup in the context of the semiconductor Boltzmann equation. As we

know, this is equivalent to the generator K of (Gg(t));>0 being a proper

extension of A 4+ B. Because our aim is to provide an example of a dishonest

semigroup, and also to keep calculations within reasonable limits, we do not

try to find the most general assumptions that would ensure this outcome.
We consider the space homogeneous equation

Ouf(t,k) = —E(K) - i f(t, k) — v(k) f(t, k) + Bf(t, k). (10.115)

The operator A is given by the expression [Af](k) = —E(k) - ok f(k) —
v(k) f(k), according to (10.32). As usual, the generator corresponding to A+ B
is denoted by K. However, as a first step, we consider the simplified case with
E = 0. In this case we deal with the collision operator and, accordingly, the
generator corresponding to —vI + B is denoted by C.

Before proceeding, let us introduce the reduced energy ¢ € [0,1) so that if
€ € [n,n+ 1), then e = n + {. Accordingly, for any function f of e, we define
fn(€) := f(e) = f(n+¢) if € € [n,n+1). In what follows we use the notation
f = (fx)ken, to relate a function to the functional sequence generated by it
in this way.

To simplify notation in the next two theorems we denote

(g, w) = /g(e,w~w’)dw', (10.116)
S2

and, using the notation introduced above, we define
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Y (Cw) = /gn(c,w W' )dw’, (10.117)

S2

where n > 1 (see (10.97)) and

Tn(C) = /%(C,w)dw = / gn (¢, w - W' )dwdw’ (10.118)
S2 S2x 52

for ¢ € [0,1),w € S%. As we are interested in conditions ensuring the dishon-
esty of (Gk(t))i>0, we further assume that there exists 5 such that 5 > a and
for any n > 1 and every ¢ € [0,1),

Fn+1(€) = BAn(C), (10.119)

with infee.1)7;(¢) =% > 0 and

Intt _Tnos g, (10.120)
’Yn-‘rl Tn
Ezample 10.33. Assumption (10.119) ensures that the scattering cross-section
grows exponentially faster than a® so that the honesty is ruled out, see Ex-

ample 10.30. An example of a scattering cross-section satisfying assumptions
(10.119) and (10.120) is offered by

g(e,w - ') = B go(w - ),
where go > 0. In this case both (10.120) and (10.119) turn into equality.

Theorem 10.34. If assumptions (10.119) and (10.120) are satisfied, then the
semigroup (Gc(t))e>o is not honest.

Proof. We follow the same approach as in Subsection 9.2.2. To be able to use
Theorem 6.23, we have to specify the extensions of the operators with which
we will be working. In this case the maximal operator of multiplication vZ is
defined on

D(WI) ={f € X; v|f| < o0 a.e},

and B is just the integral expression (10.100) defined on integrable functions
on which it is almost everywhere finite (see, e.g., (9.45)). Then we define

Cf:=—-vf+Bf, (10.121)
defined on D(C) = {f € D(vZ) N D(B); k — [Cf](k) € X}, and
1
Lf=qof (10.122)

defined on D(L) = {f € E; L|f| < +00, a.e.} is an extension of the resolvent
of vI. By Corollary 6.19 and Theorem 6.20 we immediately obtain that the
generator C' satisfies C' C C.
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Throughout the proof it is advantageous to switch between dependence on
k and dependence on the energy ¢ for which, as before, we use the identification

fk) = few) = u(e,w). (10.123)

Because v is bounded on compact subsets of R?, vf € Ly j,.(R3) for f €
D(C) C X. There is no streaming, therefore we do not have to select the
particular sequence (1, )nen to evaluate fRS C fdu. Hence, using simply 7n,, = n,
as in (10.109), we obtain

/[Cf](k)dk = lim by, (10.124)
J n—o0
for any f € D(C), where
n+1
b, =a / / D(e —1)g(s,w - w')D(e)u(e, w’)dw' dedw
S2x82 n
n+l
— / / D(e)g(e,w - w')D(e — 1u(e — 1, w')dw’dedw.
S52x82 n

To show that Theorem 6.23 is applicable here, we construct v € D(C)4 (only
depending on energy ¢) for which

lim b, = —-b<0.

n—oo

To shorten notation we denote v(e) = D(e)u(e) and, accordingly, we define
the operator C by the relation

Cv = DCu. (10.125)

Hence, using the reduced energy (, we obtain

= / (@Dn—1(O)3n(C)vn(€) = Dn(¢)Fn($)vn-1(¢))dC. (10.126)

In order to have lim,,_,o b, < 0, it is sufficient to construct v = (v, )nen, such
that for n > 1 and for ¢ € [0,1),

—b==Dn(0)7,(O)vn-1(C) + aDn-1(¢)7,(C)vn(C)- (10.127)

For the time being, we suppress ( in the notation and follow the second part
of Theorem 7.11. Using (7.31), we obtain as in (7.20),

Dn — z 171‘
Vy — Vo — - 't
" Doa" Dl’h ZO E Di17%41
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and, to get convergence of (v, )nen to zero, we have to define

v = S [ (10.128)

provided the series converges. This follows from a more general estimate which
we now establish. Using (10.119) and (10.128), we have

Dn b X i Di, x
0<w, = — E a’ — = E
Doa™ Diyy = i Disr Wi o DiDirTin
-~ (a)j b 1
< — - = =2 N an—1°’ 10.129
Far 2\5) ~5E-a (10:129

J=n

where we used D,/ D;Dj 1 <1 for j > n. This also establishes the conver-
gence of (10.128). Returning to the dependence on ¢, we further obtain

/ / on(O)dwd¢ < % ﬁnl,l 0/ b(¢)de,

0 52

from which it follows that

RZWM =S[O/u(a,w) £)dedw = Z//vn ()dwd( < oo, (10.130)

nO

as 0> a > 1; hence u € X and satisfies assumption (iii) of Theorem 6.23. To
check that assumption (ii) is satisfied, that is, v — Cv > 0, we write

vn(¢) = [Culu(¢,w)
= v (€) + () (Dng1()¥nt1(¢w) + aH (¢ — 1) Dy 1(¢)vn (¢, w))
— aDp () Yn+1(C w)vnt1(C) — H(C = 1) Dy (Q)vn (¢ w)vn—1((, w),

for any n > 1. Using (10.127), rewritten as

Dpvp1—aDy 1v, = >0,

e

for any n > 1, we have

Vo — [5’0]0 = Vo + Dl'ylvo — aD(wlm Z Vo + b% Z O
1

and for n > 1
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Un — [Cv]n =Up + Un(Dn+1’Yn+1 + aDn—l’Yn) —aDpYny1Vnt1 — DnYntn_1
=vp + (Dn-i-lvn - G'Dnvn-i-l)r}/n-&-l - (Dnvn—l - aDn—lvn)’Yn

— oo (22
fYn—&-l ’Yn
Assumption (10.120) implies that for n > 0,
Un — [CV] > v, > 0. (10.131)

The above equality also implies that —Cv > (0 and because

/(—Cu)du — O/S[(—av)dedw = b < 400,

R3

we obtain w € D(C). Assumption (i) of Theorem 6.23 is trivially satisfied,
therefore the theorem is proved. O

Next we move to the case with field.

Theorem 10.35. Let E be a Lipschitz field on R3 such that E(k) -k < 0 and
|E(k) - k| < E for all k € R® and some constant E. Assume also that % is an
increasing and differentiable function and that there is M > 0 such that

—

Tu(©) _ (10.132)

7 ()

for allmn >1 and { € [0,1). Then the semigroup (Gk(t))i>o is dishonest.

Proof. Let us recall that (G (t))i>0 is the semigroup generated by a suitable
realisation of Ag —vI+ B where Agf = —E-0xf. We denote A = Ag—vI. To
prove the theorem we show that the function u constructed in the previous
proof also in this case satisfies the assumptions of Theorem 6.23.

Because we already have u, we define the extensions of the operators in a
different way. For the extension £ of R(1, A) we shall take the operator L so
that the extension of A is defined as in (6.40); that is,

Af =f—L71f
The extension of B is taken as before, so that X = A+ B = A+ B on
D(K)={f € D(A)ND(B); Kf € X}. In this way, K C K by Theorem 6.20.
Assumption (i) of Theorem 6.23 also is automatically satisfied.
To prove that the other two assumptions are also satisfied, we recall the

notation (10.125); that is, u = v/D so that u, = v,/D,,. Explicitly, (un)nen,,
previously constructed, is given by

al

b o0
un(C) = E; Di(¢)Dj1(¢)7j41(€)

(10.133)



10.4 Initial Boundary Value Problems for the Full Transport Operator 343

Because we are working with functions that only depend on energy e, it is
advantageous to express the gradient Jy in terms of the derivative with respect
to . For any f(k) = u(e) where ¢ = |k|?/2 we have

O, f (k) = O-u(e)Or,e = kiug(e)
and thus -
/|8kf(k)|dk = 87r/ [ul(¢)elde. (10.134)
R3 0
The next step is to prove that the function v = (up )nen, is continuous at € = n

for any n > 1. To achieve this, it is enough to show that u,(0) = u,_1(1) for
any n > 1. Taking, for example, b = 1 we obtain

1 o 1 o /
un(0) = an ; y+1(0)7j+1 Tan ; J(IWj(l)
al
B 1%21 Di(1)Dir (1744 (1) =l
Hence u is Lipschitz on (0, 00). Next we obtain
d 1 2j+14+2¢

d¢ D;()Dj+1(Q) 4+ +1+))32

which is uniformly bounded in ¢ as j — oo and thus u,, can be differentiated
termwise giving

oo

S 1 al 2 +1+2C
= "5a W(o( 2G1QOG L 110

1 ’7;4-1((:)

GTo0 +1+<>>1/2%+1<<>>

which, for n > 1, can be estimated uniformly in ¢ € [0,1) as

1 & / 1 M (1+M) 1
U, () < 5 YoTT +— < 0= ;
. 2a” ; Vi41(C (13/2(3 +M2 (G + 1))“) 25(8 — a) g1
where we used (10.132) and repeated the estimates (10.129). For n = 0 we
have by ug = au; + 1/Do D17,

3 M a(l1+ M)
|u0( )‘ = 4,YC3/2 + 27§1/2 2'7(ﬁ_ a)

so that the gradient of u is integrable by (10.129) and (10.134).
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Because u is a monotonically decreasing function of ¢, for f(k) = u(e) we
have, by the previous theorem,

f(k) + E(k) - 0 f (k) + (vf) (k) — (Bf)(k )= u(e) + ul()B -k — (Cu)(e, w)
> ul(e)E -k,

by (10.131). The assumption E - k < 0 implies

fK)+E-Of + (vf)(k) — (Bf)(k) >0
and clearly, by Theorem 10.2 and (10.124),

/(E'akf+Vf—Bf)du:/cfdM:_
RS

R3
To complete the proof we have to show that f € D(A). Let us consider
f+E-Of+vf=h

The first two terms are integrable on R but the third one is not. So the func-
tion h is nonnegative and locally integrable as v f is integrable over bounded
sets of R3. Let us consider a sequence (f,,)nen defined by f,, = fé, where ¢,
is a C§°(R?) function such that ¢,, = 1 on the ball B,,, ¢, = 0 outside By, 11
and |Oxdn| < ¢ for some constant ¢ independent of n. Clearly lim,, oo frn = f
in L1 (R?) (and also monotonically a.e.). Moreover,

Because each term on the right-hand side is integrable, we have

fn = R(laA)(¢nh> + R(L A)(fE ) 6k¢n)a

where the sequences (fn)nen and (R(1, A)(fE - Ok¢n))nen are convergent in
L1 (R3), with the second converging to 0. Thus

lim R(1,A)(¢nh) = f
in L;(R?) and because the sequence above is increasing, Proposition 2.73
implies

f=supR(1, A)o,h.

neN

Thus h € F and f = Lh, or h = f + Af and the theorem is proved. O
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Nonuniqueness

Earlier in this section we proved the existence of a semigroup generated by
a particular realisation K of the operator A + B = Ag — vI + C, where Ag
is the free streaming operator and —vI + C' is the inelastic scattering oper-
ator which are defined by (10.24) and (10.98), respectively. As discussed in
the Introduction (see also Sections 3.6, 7.5, and Subsection 8.3.3) this semi-
group does not necessarily solve (10.16) as it stands, because the semigroup
framework introduces implicitly additional regularity assumptions that were
not present in the modelling process, namely, that the obtained solutions (or
their integrals, if we are talking about mild solutions) must be in the domain
D(K) for all t > 0. In general, this domain is smaller than the domain of the
maximal realisation of A + B.

Here we construct a collision operator having a structure of the inelastic
collision operator of semiconductor theory, (10.100), for which its maximal
realisation is a proper extension of the realisation which is the generator of a
semigroup. It is, however, fair to note that, as in the example of dishonesty,
the model is of mathematical rather than physical interest because it requires
the scattering cross-section to grow exponentially fast for large energies.

Moreover, we confine our attention to the space homogeneous and field-free
case. That is, we only deal with the Cauchy problem for the equation

8f =Cf =—vf+BJ, (10.135)

where v and B are defined through (10.99) and (10.100) and satisfy all assump-

tions introduced in Subsection 10.1.3 and at the beginning of this subsection.
Because we are only dealing with the operator C, it is advantageous to

redefine the unknown function f as in (10.125) and (10.123) by writing

v(e,w) = D(e) f(kw) = D(e)u(e, w), (10.136)
where k is related to € by (10.95) so that
ve X, =L1(Ry x 5%, dedw). (10.137)

Multiplying both sides of (10.135) by D(e) and using the above notation, we
obtain the equivalent equation

dyv = —vv + Bu, (10.138)

where v is still given by (10.99) and B is a suitable realization of the expression

(Bv)(e, w) = aD(e) /g(zs Flw-wo(e + 1,0 )dw’ (10.139)
S2

+H(5—1)D(€)/g(5,w cwv(e—1,w")dw’ + D(E)/h(e,w cw (e, w')dw'.
52 52
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After these preliminaries we can define the maximal collision operator by

(Crnax?) (g, w) = (Cv)(g,w) = —v(e,w)v(e,w) + (Bv)(e, w) (10.140)
Diax = {v € X3 (1) (e,w), (Bv)(e, w) are finite a.e., Cv € X.},

where, we recall, the script letters denote expressions defining respective op-
erators, as in (10.100) and (10.139). In other words, Cp.x is the pointwise
operator defined on the natural domain in X, and, as such, can be thought
of as the operator appearing in the modelling process.
To proceed, we write the function g defining the scattering cross-section
as
gle,w-w') = g(e) + ple,w - ) (10.141)

and first concentrate on the collision operator determined by the isotropic part
g. Thus, let v and B; be defined by (10.99) and (10.139) with g replaced by g.
As we show, the elastic scattering kernel h is irrelevant in the considerations
so that there is no need to redefine it here. We denote by Kj the extension of
—vgl + Eg that generates the contraction semigroup (ég(t))tzo by Corollary
5.17 and by (Cj max, Djmax) the respective maximal operator (10.140).

Following Section 3.6, in order to check whether Dg max \ D(Kj) # 0, it is
enough to find if there are eigenvectors @, € X, satisfying

Cydx = \D», (10.142)

for A > 0. In fact, such a solution automatically satisfies @) € Dg max by the

above equation and @ ¢ D(Kj5) because, by contractivity of (G5(t))¢>0, the
spectrum of K g is confined to the left half-plane.

In what follows we are looking for isotropic solutions to (10.142) and we
suppress the index A. By (10.99) and (10.139), it is clear that the elastic
scattering part vanishes on isotropic functions v(e,w) = v(g):

D(e) /h(s,w ~wv(e)dw' = v(s)D(e)/h(a,w cwdw',
S2

S2

and therefore it does not appear in the following considerations.

We write (10.142) as an infinite system of equations similar to the sta-
tionary birth-and-death system (7.28). For this we use the notation intro-
duced above (10.116). In particular, for the reduced energy ¢ € [0,1) we have
v(€) = (Vp())nen, if e =n+ ¢ € [n,n+ 1). The sequence (¥,,)nen is defined
by (10.118) with g replaced by g. Hence, we look for a sequence (®,,(¢))nen,
¢ €[0,1), D,(¢) = P(n + (), that satisfies
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)\@0 = —’_)/1¢()D1 + CLD0’71¢17

2D, = _(Dn+1'7n+1 + aanlﬁn)én + aD“ﬁnJrl@"‘H + Dnﬁ/"én*l’
(10.143)

Note that the variable { appears in the system as a parameter and the elastic
part disappears, as mentioned above. Moreover, as the setting is now inde-
pendent of w, we work in the space 9¢ = [[;2, L1([0,1]) of the functional

sequences P(¢) = (,,(¢))nen that satisfy |||y =D~ fol |2,,(¢)]d¢ < 0.
Theorem 10.36. Let us assume that

inf  5,(0) =4r inf G(€) > Yomin 10.144
el )7 (©) Wsel[goo)g(ﬁ),w >0 (10.144)

and for some 3> 1 and ng € N

'_Yn(f) —1
sup — <G 10.145
£€[0,1),n>ng %+1(§) ( )
If
a+1
8> T (10.146)

then for any A € C there is a solution (Pp)nen € YD to (10.143).
Moreover, if A > 0, then these solutions can be chosen to be nonnegative.

Proof. Let us fix arbitrary A. We note that Dg(0) = 0, so to solve the first
equation we assume that @4({) = 0 for ¢ < ¢, where c¢ is an arbitrary positive
constant. With this choice

A+ DO
210 = 2B 0Om(©)

and, as D, (¢) # 0 for any other n and ¢, we obtain that @,(¢) € L1([0,1])

for any n. Thus it is enough to prove that y>° fol |2,,(¢)]d¢ < oo for some
ny € N. From (10.143) we obtain the recurrence formula

Do(¢) € L1([0,1])

A + Dn+17n+1 + aDn—l'?né _ :Yn
n

- — D, _1.
aDn'yn+1 AYn+1 "

¢n+l -

Using assumptions (10.144) and (10.145), for n > ng, we obtain

A 1D, 1D,_ 1
AL 1Dn 1 1) Bl + (8.
aDn'Yn-i—l a D, B D, af3

|Ppy1] < (

By induction we obtain that
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1 1
sup — < = —
cefo.1) Yn41(Q) = Fmin im0

and, as lim,, o Dypy1/D, = 1, for any n > 0 we can find n; > ng such that
for all n > ny
[A| 1Dpy1 1Dy 1

1
— = < -4 = . 10.147
aDwines Ta Dy (B D, BSatpth (10.147)

Thus, for n > nq,
|¢n+1| S qW|€pn‘ + (aﬁ)71|@n—1‘

uniformly in ¢ € [0,1). It is easy to check by induction that |@,, +x| for £ > 1
are dominated by the terms of the Fibonacci sequence
gir1 = Qngk + (aB) gk,

where go = |Pp, 1], g1 = |Pn,|. Thus, if the sequence (gi)ren is summable,
then (@,,)nen € Y¢. However, by the Poincaré theorem, [77, Theorem 8.9], gx
is not growing faster than (max{w,,w_})* where

Q£ 4/ +4(aB)7?
2

w(n) =

$0 (gk)ken is summable provided |w4(n)| < 1 for some 5 > 0. As |w_| < |wi],
we only focus on w4 (n). Let us put first n = 0; then we see that

qo+1\/@@+4(aB)"t <2

is satisfied if (a¢3)™! < 1 —a~!* — 37! and this follows from the assumption
(10.146). Therefore we have 0 < w4(0) < 1, and because w4 (n) is a continuous
function of 7, we obtain the existence of n > 0 for which the inequality is still
satisfied. Using this 1 and the corresponding ny in the definition (10.147) of
qn, we obtain the summability of (®,,)nen.

To prove nonnegativity, let us shorten the notation by putting §,(¢) =

Dy 1(O)Fn+1(¢) and 1y, (€) := aDyp—1(¢)Fn(€). Let us first note that pu®; =
(A + 90)Pp implies &1 > 0 provided P > 0 and hence

(A4 p1)@1 — 600 = NP1 + Do) > 0.
For arbitrary k > 1 we have from (10.143),
A+ pg) P — Op—1Pp—1

A
(1 + M) (A + k=1 + po—1)Pr—1 — Op—2Pr—2) — Ox—1Pr—1

A
> (1 + Hk) (AN prh—1)Pr—1 — Op—2Pr—2) (10.148)
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so that, by induction, (A + pg)Pr — 0x—1Pr—1 > 0 for any k. By, once again,
(10.143), we obtain

1
b, = ? (()‘ + 01+ /jfnfl)@n*l - 5”‘72@”72)

1 A+ Opn
((1 + 1) (A4 0p—2+ ftn—2)Pp—2 — 0p_3Pn_3) — 5n2¢n2>

Hn Hn—1
1 A+
> p <1 + an) (A pn—2)Pp—2 = 6p—3Py_3) >0
n n—1

by virtue of (10.148). O

Corollary 10.37. Under the assumptions of Theorem 10.36, there exist dif-
ferentiable solutions to Eq. (10.158) that are nonnegative and norm-increasing.

Proof. Let us fix arbitrary A > 0 and for the corresponding eigenfunction @
we put vg, (t) = e*®,. This is a differentiable function satisfying

d ~ ~
Z‘iA = )\e)\té)\ = e)\th,max@)\ = Cg,maxvqf',\; (10.149)
with [Jvg, (t)|| = e ||@,]|. Therefore, by Theorem 10.36, we obtain a non-

negative solution with increasing norm. 0O

Example 10.38. It is worthwhile to note that there are collision frequencies
which give rise to honest semigroups but these semigroups do not generate
all solutions to (10.138); that is, their generator is not the maximal operator.
For example, consider the collision frequency given by g(e) = a°. According
to Example 10.30, the corresponding semigroup is honest provided o < +/a.
On the other hand, assumption (10.145) is satisfied with 8 = « and thus
there are multiple solutions provided a > (a + 1)/(a — 1) as then (10.146) is
satisfied. Thus the generator K, g satisfies —vgl + Eg =K g 7 Cg max provided
(a+1)/(a—1)<a<+a,a>1.

Before we proceed further, we need the following lemma.
Lemma 10.39. The operator é@max s closed.
Proof. The operator 5g,max is defined on the domain consisting of all v € ¢

for which >~ fol [(Cmax®)n (O)]dC < 00. Let v — v and Cy maxv™ — w
as n — oo in YP¢. By the diagonal procedure we can select a subsequence, still

denoted by (v(™),,cn, such that for each , vli") (¢) — vi(¢) almost everywhere
on [0, 1]. Hence, for a fixed k, the sequence

(Comaxt™)i(€) = = (Dir1(OFr11(€) + aDi—1 (€)™ (C)
+aD(OFr+1 (v, + DOk (v,
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converges almost everywhere to (CN’@maxv)k(C). Thus w = ég,maxv and ég,max
is closed. O

Let us now have a closer look at Corollary 10.37. First, let us recall for
clarity that by a classical (or strict) solution to (10.138) we understand a
D(I?g)—valued function ¢ — wv(t) that is continuous on [0,00) and strongly
differentiable on (0, 00) in X, topology, and satisfies (10.138) (with C replaced
by I? ) and the appropriate initial condition in the X, sense, see Definition
3.1. All classical solutions are given by v(t) = (N?g(t);}, with 0 € D(I?g). If
v D(f(g), then the function é’g(t)ﬁ, called the mild solution, is, in general,

not differentiable nor D(Kj)-valued but
t
/ég(s)ﬁ ds € D(Kj)
0

and the function v satisfies the integrated version of (10.138):

t t

o(t) =0 +/[~(—v(s)ds =0 +/C~'§7maxv(s)ds,
0 0

on account of I?g - C~'§7max.

The solutions vs, , constructed in Corollary 10.37, emanate from particular
initial values @, that are solutions to (10.143) and that do not belong to the
domain of the generator Kj, as explained below formula (10.142). For such
initial values the semigroup offers only mild solutions given by t — v(t) =
G5(t)Px. These mild solutions satisfy ||G5(t)®x]| < ||@x] and therefore are
different from v, that grow exponentially. Because IN(g is a restriction of
CN’@max, that is,

t
/Gg(s)di)\ds € D(K3) C D(Cj.max),
0
Lemma 10.39 implies that the mild solution given by the semigroup is also a
solution to

t
U(t) = QS)\ +/5§,maxu(8)d8. (10150)
0

By direct integration of (10.149), however, we establish that the solution e*®,
is also a solution to (10.150). Thus from Corollary 10.37 we infer that there
is a set of initial values for which there exist multiple solutions to (10.150)
(which is the integrated version of (10.138)). Then,

w(t) == Gy (t)Py — Ny,
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is a nontrivial solution of (10.150) with zero initial condition; that is, w is a
mild nul-solution defined in (3.100). The following result follows from Corol-
lary 3.49.

Theorem 10.40. If the assumptions of Theorem 10.36 are satisfied, then
there are differentiable nul-solutions to Eq. (10.138).

Proof. Let us fix w > 0 and let @, be the corresponding eigenvector of 5g7max.
From the discussion above, V() = ég (t)®,, — e*t®,, is a mild nul-solution to
(10.138). As (ég (t))+>0 is a semigroup of contractions, V' (¢) is an exponentially
bounded mild nul-solution and because 5g7max is closed by Lemma 10.39, from
Corollary 3.49 we infer that the Laplace transform V() of V (¢) is a bounded
holomorphic function of A in the half-plane R\ > w + ¢ for any 6 > 0 and
satisfies the characteristic equation CjmaxV(A) = AV(A). However, arguing
as in the proof of Theorem 3.48, the inverse Laplace transform of (a possibly
regularized) V() is a differentiable nul-solution of (10.138). O

Next we consider the anisotropic scattering cross-section defined by (10.141).
We start with the lemma.

Lemma 10.41. If for ¢ > 0 and w,w’ € S?,
gle,w W) =g(e) + ple,w - '),

where SUp,. ¢, 00),ze[—1,11P (€)[ (€, 2)| = M < +00, then the operator Crmax — Cg max
is bounded in X..

Proof. Because D(e — 1) < D(e), for a given function v € X,, the integration
gives
[Crmaxv = Cg.maxv|| < 87M (1 +a)|[v].

O

Let us recall that (G'%(t))¢>0 is the semigroup generated by the extension

K of the operator (—vI + B, D,).
Theorem 10.42. If the assumptions of Theorem 10.36, Lemma 10.41 and

the assumption (10.107) are satisfied (see Example 10.38), then there are dif-
ferentiable nul-solutions to Eq. (10.158).

Proof. The assumptions show that the generator of the semigroup (G (t)):>0

is given by K = (—v+ E, D,). Moreover, we note that D, = Dy, .

By Lemma 10.39, Cg max is closed so that Cpax is closed, by Lemma 10.41,
as a bounded perturbation of a closed operator. Let @ satisfy Cgmax® = w®
for some w > 0. Then Crhax® = w® + (Cmax — Cg,max)P € Xe, again because
of Lemma 10.41. Thus @ € D(Cmax)- It remains to be shown that & ¢ D(K).

Assume the contrary. Then because K = (—v+ E, D,), there is a sequence
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(dn)nen, dn € D, for all n, such that lim ¢, = @ and Cyax¢, converges in

n—oo

X.. However, as Cjmax®n = Cmax®n + (Cjmax®n — Cmax®n), the sequence
(Cg,max®,, )nen converges in X, again by Lemma 10.41. This yields ¢ € D(IN(g)
which contradicts dissipativity of K. _

Hence, D(Chax) \ D(K) # () and because K is dissipative, Corollary 3.51
implies that there exists a function u) that is bounded and holomorphic in the
left half-plane P, = {\ € C; RA > v > 0}, where v is any positive number,
such that Cryaxux = Auy, for all A € P,. As in Theorem 10.40, the existence of
such a function yields the existence of differentiable nul-solutions of (10.138).
O

10.5 Problems with General Boundary Condition

In previous sections only boundary value problems in which the unknown
function satisfied 7_ f = 0 on D_ were studied. Here we discuss more general
boundary conditions defined in terms of a boundary operator H which relates
outgoing and incoming fluxes of particles. The theory we develop here is very
similar to the considerations of Chapter 6 with the operator B being replaced
by H. We focus on stationary problems for the streaming operator but also
provide a few applications to the evolution problems for this operator.

10.5.1 The Streaming Operator with Nonhomogeneous Boundary
Data

Let us consider the following problem: find f € D(A) such that

(M —A)f =g, (10.151)
T_f=h, (10.152)

where g € X, h € L1(D_,du_), T— is the boundary operator defined by
(10.54) and A > 0 is fixed.

The domain of the generator is a linear subspace, therefore in the semi-
group theory usually we are concerned with homogeneous boundary condi-
tions for the generator. However, certain techniques in the time-dependent
kinetic theory, which we discuss below, require solving sequences of problems
of the type (10.151), (10.152). Apart from this, stationary problems are also
of independent interest.

The main result in this subsection is the following theorem.

Theorem 10.43. Let us define for x € A

t_(x)
filx) = [ e vt onisg o, 0)at, (10.153)
0
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and

e , ) .
o) = 4 €T O LB R(p(x 1 (x),0)) if £ (x) <00, (10 154)
0 if t_(x) = o0.

Then problem (10.151), (10.152) has a unique solution f € D(A) which is
given by the formula

f(x) = fi(x) + fa(x). (10.155)

This solution is nonnegative if both g and h are nonnegative.

Proof. The proof of Theorem 10.20 shows that f; € D(A), (A\I—A)f; = g and
T_f1 = 0. Hence f, defined by (10.155), is a solution of the problem (10.151)
and (10.152) if and only if fo € D(A) with (\] — A)f, =0 and T_ fo = h. To
prove that this is the case, we note that, as in (10.61), we obtain for y € D_
and t > 0,

folp(y, 0,1)) = ™ lo O (el 0 e ),

Therefore
Jm fo((y,0,8) = h(y);

that is, T_ fo = h.
Similarly, for y € Dy and ¢ > 0, we have

Ty foly) = {e_f”tm(””(“’(y’s’o”)dsh(w(y,t(Y), 0)) if y € Dy \ Dy,
0 ify € Dj.
(10.156)
Now we prove that Ty fo € L'(D4,du,) and vfs € X by showing that the
equality
1Ty foll + [(A +v) fall = [I2l, (10.157)

holds for any h € Li(D_,du_).
From the definition of fy we infer that fo(x) = 0 for x € A_,,. Therefore

/(/\+V)|fz|du - /<A+u>|f2|du
A A_

t4(y)

= / / (A + v(p(y,0,1)))e Jo At (e 05D)ds |\ (v | dtdpy, _
D_ 0
t(y)
= / |h(y)| <]_ — 67.f0+ Y ()\+V(Lp(y,0,8)))d8> dﬂy77.
D_

Because the function

ty(y)

D_3y—e o OH@d0.9))ds v
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is not greater than |h| and, in particular, it vanishes on D_.,, we see that it
belongs to L'(D_,du_), and

) v s s i+ v s s
/ /o A+ (p(y,0,5)))d Ih(y)\duy,—z /e fo (A +v(p(y,0,9)))d \h(y)|duy7_.
D_\D_o
The latter integral can be evaluated according to Proposition 10.12 as
f+ ) v s s
/ eTo Y ey 0.5 () day
D_\D_w

= [ b 1 (2), 0o
D+\D+oo
By (10.156), we have

t_(z)
/ e~lo T Ot s b (0o, t(2),0))dptg s = T fo-
Di\Doo

Therefore we can conclude that

1A+ v) fall
t_(z)
/ |n(y)|dpy, - — / elom Qe ONE b (p(2, 1 (2),0))dpts,+
Di\D4oo
= [|n]l = | T4 £l

which is the same as (10.157).
Next we prove that (Al — A)fo = 0. Let ¢ € C}(A). Then

/ Afatbdys = / F2() (A 09) (%) — 1(x)b(x) )y
A A

= [ F26(A-90)(0) ~ vx)b0)dn
A_

t+(y)
= [ ] falet5.0.0)(4- 06 - vo)(oly.0,)dedy -
D_ 0
t+(y)
:/ / Byt 2 (e’fg”(“"(y’o’s))d%(w(y 0 t))) dtdy
dt ” v
D_ 0
t(y)

= )\/ / h(y)e‘fJ(/\+u(w(y,0,s)))dsw((p(y707t))dtd’uy’7

D_ 0
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= AA/f2¢du.

Finally, we prove that (10.155) is a unique solution. Suppose, to the contrary,
that the problem (10.151), (10.152) has two solutions. Then their difference,
say f, satisfies the same problem with ¢ = 0 and h = 0. This implies f €
D(A_) so that Theorem 10.20 can be applied, yielding f =0. O

We note an important corollary stemming from Theorem 10.43.

Corollary 10.44. If f is the solution to problem (10.151), (10.152), then
T, f € LY(Dy,duy) and the inequality

1T fI+ I+ w)fI < A+ gl (10.158)

holds. In particular, if g > 0 and h > 0, then (10.158) becomes an equality.
Moreover, we have

/T+fdu++/(/\+u)fdu: /hdu_+/gdu. (10.159)
A D_ A

Dy

Proof. From the proof of Theorem 10.43 we have T_f; = 0 and T4 fo €
Li(D4,dpy) and from (10.66) we obtain T f1 € L1(Dy,dpy) as f1 € D(A_).
Thus, using (10.66) and (10.157), we obtain

1T FIIH I+ < NT5 Aol + T A+2) Al 1T fal 4 T A+ v) ol < (IRl

which becomes an equality for ¢ > 0 and h > 0, because in this case (10.66)
also becomes an equality and (10.157) is always an equality.

To prove (10.159) we note that because the norm in L; of a positive func-
tion is its integral, (10.159) is the same as (10.158) for h,g > 0 and for arbi-
trary functions it follows by splitting them into positive and negative parts.
O

10.5.2 The Streaming Operator with General Boundary
Conditions

In this subsection we discuss more general boundary conditions defined by a
boundary operator. By the boundary operator we understand a bounded linear
operator

H:Li(Dy,dpuy) — Li(D_,du_).

The operator H is called dissipative if |H|| < 1 and conservative if | H|| = 1.
With H we associate a linear operator Ay defined by

AHf = Af,
D(An) ={f € D(A); Tof € L1(D+,dp+), T f = HT f}, (10.160)
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where A is defined by (10.32).

We start with definitions of various operators that allow us to lift the traces
of functions or transfer them between the incoming and outgoing boundaries.
The following operators are well defined for each A > 0 by virtue of Theorem
10.43. We define for g and 1 in respective spaces:

1. L)\ : Ll(/l, du) — L1<A,dﬂ) by
t_(x)
Lag(x) = / e~ JoOtrlebesOds g(o(xc ¢.0))dt, x €A,  (10.161)
0

2. Gx: Li(A,dp) — Li(Dy4,dpy) by
t—(y)
Grg(y) = / e~ fot(>\+V(s0(y»8’0)))d5g(<p(y,t,0))dt, y €Dy, (10.162)
0
3. Cx: Li(D_,du_) — Ly(A,du) by

t_(x)
Crip(x) = e o™ Orrlebes sy (o(x t_(x),0), x €4, (10.163)
4. M,\ : Ll(D_,d/,L_) — L1(D+,d/.t+) by

>\+u(¢(y,s,0)))ds¢(@(y,t,(y), 0)), yeDy.
(10.164)

We adopt convention that if t_(x) = oo in (10.163) (resp., t_(y) = oo in
(10.164)), then Cyt)(x) = 0 (resp., M yp(y) = 0).

Comparing these operators with the notation of Theorem 10.43, we see
that f; = Lyg and fo = C)h. Thus it is easy to verify that for all g € Ly (A, du)
we have Lyg = (A\—A_)"!gand G)g = Ty L,g. Concerning the latter, we note
that Lyg € L1 (A, dp) so that (T_Ly)g = 0 and hence (T4 Lxg) € L1 (D4, dpy)
by (10.66). Thus G indeed is well defined. Also, for all ¢ € Ly(D_,du_), we
have M1 = T Cy\1). Therefore,

1Gxgll + [[(A+v)Lagll < llgll, g € L1(A, dp),
M| + (A +v)Ca|| = |¥]l, % € Li(D—,dp—).  (10.165)

We have the following result.

Proposition 10.45. Suppose that there exists \g > 0 such that for all A > g
and g € Li(A,dp) the series Y .- (M H)"G\g is strongly convergent in
Li(D4,duy). Then, for all X\ > Ao and g € L1(A,dp), the function

Myply) = e ¢

f=1Lxg+C\H (Z(M,\H)"G,\g> (10.166)

n=0

is a solution of the equation

(M —Ap)f=g. (10.167)
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Proof. For any A > \g and g € L1(A, du) we denote

E>\g == Z(M,\H)HG,\Q.
n=0

Our assumptions ensure that =g € L1 (D4, du4 ) sothat H=\g € L1(D_,du—).
Then both Lyg and CyH =g are elements of D(A), and hence f € D(A).

Furthermore, because (T-Ly)g = 0 and T_-C\¢) = ), we have T_f =
HZ=,g. Similarly, T f = Gang + M)\HZ=)\g = =g so that T_f = HT, f and
f € D(Ag).

Finally, because (AI — A)Lyg = g and (A — A)C\H =g = 0 by Theorem
10.43, we see that f solves (10.167). O

Proposition 10.45 allows us to prove the following two theorems.

Theorem 10.46. If the boundary operator H is dissipative, then Ay is the
generator of a Cy-semigroup of contractions (G ay (t))i>o0. Moreover, if H > 0,
then (Ga,, (t))e>0 is substochastic.

Proof. Equality (10.165) implies that for each positive A we have ||M,| <
1. Thus, if we suppose |[H|| < 1, then |M)H| < 1. Hence the series
Yoo o(MyH)"Gyg is convergent in Ly(Dy,dpy) for all A > 0 and g €
Ly(A,du). Proposition 10.45 then implies that the function f defined by
(10.166) is a solution of the equation (10.167). This property and (10.158)
ensure that

IAFI < IO+ )71 < llgh+ IT- £l = [T £l

However, T_ f = HTy f and || H|| < 1, so that ||T_ f|| — || T+ f]| < 0. Therefore
IAfI < gl

or
AL = Am)fIl = Al A1,

which is exactly the equivalent condition (3.42) for dissipativity of Ag. Be-
cause C§°(A) C D(Ap), Ay is densely defined in L;(A, dp) and Proposition
10.45 implies that Im(A — Ay ) = L1(A,du). Therefore the Lumer—Phillips
theorem, Theorem 3.19, shows that Ay generates a strongly continuous semi-
group of contractions in Ly (A, du).

The representation formula (10.166) shows that Ag is resolvent positive
for H > 0, which implies that (G, (t)):>0 is positive, see Section 3.4. O

When the boundary operator H is conservative, we obtain a weaker version
of Theorem 10.46.

Theorem 10.47. Suppose that | H|| = 1. If the series Y- (MxH)"Gxg con-
verges in L1 (D, dpy) for allA > 0 and g € Ly (A, dp), then Ag is the genera-

tor of a strongly continuous semigroup of contractions. Furthermore, if H > 0,
then (Gay (t))i>0 is substochastic.

Proof. The assumption of the convergence of the series and inequality (10.158)
allow us to repeat the proof of Theorem 10.46. O
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10.5.3 An Application to Multiplying Boundary Conditions

Let us consider a system of particles moving in a homogeneous slab in R? with
the coordinate system set so that the boundary planes are given by 1 = +a,
where R® > r = (r1,72,73). We suppose that F = 0 so that all particles
have the same speed v. To simplify the notation, we assume that v = 1. In
slab geometry we assume that the boundary planes are homogeneous so that
the problem has cylindrical symmetry with respect to the axis e; = (1,0,0).
Writing the direction of velocity in terms of the polar and azimuthal angles,
we see that the distribution function is independent of the azimuthal angle
and thus the velocity v is fully determined by y € (—1, 1), where y is the cosine
of the angle between v and e;. This makes the problem one-dimensional in
both space and velocity.

Hence we introduce A = (—a,a) x (—1,1) and, because F = 0, the free
streaming operator is given by

AOf = *Narfa re (70'70’), Yy e (*171)'

The boundary conditions are given as follows.

0
yu(—a,y,t) = a_ / W u(=a,y 0dys g€ (0,1),
—1

1

ly| u(a,y,t) = aJr/g/u(a,y’,t)dy’7 y € (—1,0). (10.168)
0

These boundary conditions describe the situation when particles, upon contact
with the boundary surfaces, are either partially absorbed or reflected by both
boundaries (ax < 1), multiplied by both boundaries (ax+ > 1), or multiplied
by one boundary surface and absorbed by the other (referred to as mixed
boundary conditions).

We rewrite this problem in a more compact form using the notation and
terminology of this chapter.

As we said earlier, A can be identified with (—a,a) x (—1,1) and thus the
surface measures do, and do, are given by dr and dv. Also, we have 0f2 =
{—a,a}, and the outward normal unit vector is given by n(+a) = (£1,0).
Then

D_ ={-a} x[0,1]U{a} x [-1,0],
D, ={-a} x[-1,0]U{a} x [0,1].
We also define

S, (r) = { (=1,0) for r = —a,

(0,1) forr=a,

and
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_J(0,1) forr=—a,
5-(r) = { (-=1,0) forr = aq,

and thus we can write

[tane =3 [ sy

Dy T:iaSi(T)

for any integrable function f.
With this notation we can write the boundary conditions (10.168) as

olr
Hﬂ(r,w'(yl) [ Wiy, de Ll (0169
Sy (r)

for (r,y) € D_; that is, 7 € {—a,a} and y € S_. Here a(r) = a1 for r = +a.
Furthermore, we define v = max{ay4 }.

We also note that the minimal travelling time between successive reflec-
tions occurs when a particle is reflected in the direction perpendicular to a
boundary plate and travels the distance 2a with the speed v = 1 before reach-
ing the other plane. In other words,

0 =inf{t_(r,y),(r,y) € D4} =2a > 0. (10.170)

Theorem 10.48. Under the above assumptions the operator H is a bounded
operator from Li(Dy,duy) to Ly(D—,du_) and the corresponding streaming
operator Ay generates a Cy-semigroup.

Proof. Let ¥ € L1(D4,dp,). The kernel of H is nonnegative, and thus we
can suppose ¥ > 0. Then

|| = / Hdu- = Y alr) / / W/ [9(r, ')y dy
D r=4a

57(r) 84(r)
= Z a(r) / ly/'[9(r,y")dy' = /oa?d;ur, (10.171)
NG| Dy
hence
[HI|| < A[9], (10.172)

and so H is bounded.

Now let us take ¢ € Ly(D_,du_), fix A\ > 0, and consider the function
HMy1 € Li(D_,du_). Observe that in this case, for x = (r,3) € A and 0 <
t <t_(r,y) we have simply ¢(x,¢,0) = (r —ty,y) so that, if b € L1 (D_,du_)
and (r,y) € Dy, then

Myip(r,y) = e M=TDp(r —t_(r,y)y, ).
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Thus, for ¢» > 0, we obtain

Ml = Y at) [ [ Wle 00— e ' dy
r=%a
8 (r) 81(r)

and, by (10.170), we obtain

[l < e Y at) [ [ Wit ey
TR 9T S84
—e Y a0) [ - )y
TR sl
< ye / Y —t_(ry)y Y )dug
Dy
Because in our case the sets D_o, and D4, are empty, Proposition 10.12
implies

/ Y(r =t (r,y)y,y)dps = / Y(ry)dp—,
Dy D_
so that finally

|H M) < 7e / W) = e . (10.173)
D_

Hence |[HM,| < 1 for all A > (Inv)/d. Thus the series Y.~ (HMy)"¢
converges in Ly (D_,du_) for any ¢ € L1(D_,du_) and A > Ao = (In~) /6.

We now show that this implies that the series > - (MxH)™J converges
in Li(Dy,dpy), for all 9 € Ly(D4,duy) and A > Ag. Indeed, we know that
[My]] < 1 for all A > 0 and also that v = HY € Lyi(D_,du_) for each
¥ € L1(D4,duy). Thus, for n > 0,

n+1 n n
STMAH Y =9+ MY (HMyPHO =9+ M) (HMy)

and the statement is proved.
Using Proposition 10.45 we see that for any g € Ly (A, du) and A > Ao, the
function

f=1Lxg+C\H (Z(MAH)"GAg> (10.174)
n=0

is a solution of the equation (\] — Ay)f = g.
Taking into account the inequalities |[Lag|| < A7t gll, [|Ca|| < X712
(see (10.165)), [|[Gagll < llgll, [[H]| < v we obtain
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1
I91= 5 (14 1= ) bl (10.175)
Next we show that the function f defined by (10.174) is the only solution of
the equation (AI — Ag)f = g. Indeed, if there is another solution, say fi, then
the difference w := f — f; satisfies the equation (AI — Ag)v = 0. However,
Theorem 10.43 shows that the only solution of the problem (A — A)w =
0,7_w = h is given by w = Cy\h. Because the boundary condition in our
problem is T_w = HT;w, we have w = C\HT w and hence T_w = HT;w.
Also M)\T_w = T,w, therefore we obtain T_w = HM,T_w. However, the
last equality is impossible because ||[HM,|| < 1 for A > Ag.

Thus each A > A belongs to the resolvent set of the operator Ay and for
such A we also have R(A, Ay) > 0. Now we split the proof to cater for three
different types of boundary behaviour determined by the coefficient a.

Case 1. vy = max{ay,a_} < 1.

In this case A\g < 0 and Theorem 10.46 shows that Ay is the generator of a
substochastic semigroup.

Case 2. min{aq,a_} > 1.

In this case we follow [52] and show that it is possible to use Theorem 3.39
to obtain a generation result. For this we need estimate (3.83). Actually, we
prove a stronger result:

0 — Al > 191, (10.176)

for A > A\g and g > 0. Let 0 < g € Li(A,dp). Then f = (A — Ay)~tg has
integrable traces and we can use (10.159) with v =0 and h = T_ f so that

/T+fdu++A/fdu /T_fdu_+A/gdu.

Dy D_

However,

[ rosdu- = [ BT fdp = [ Tosdpe,
D_

D_ Dy

where the last inequality follows from (10.171). Inserting it into the previous
identity and rewriting it in terms of norms, we obtain

- 1 1
10T = 4) gl = [ gz 5 [ gdu = Sl
A A

and (10.176) is proved. Clearly, C§°(A) C D(Ag), thus all assumptions of
Theorem 3.39 are satisfied and Ap is the generator of a positive semigroup.
However, this semigroup is not a semigroup of contractions.

Case 3. ar < 1,01 > 1.

In this case, one boundary plate is absorbing while the other is multiplying. To
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fix attention, we assume that oy <1 and a— > 1 and introduce an auxiliary
boundary operator H defined by (10.169) with &ty = o~ > 1 and a_ = a_.
It is clearly a positive operator satisfying H > H. This yields, by (10.174),

0< (A= Ap)™ < (\[— Ap)™"

for A > Ag (Ao is in both cases given by (Ina_)/d) and by induction this
extends to

(AL — Ag)™" < (AT — Ag)™"
for any n which implies, by Remark 2.68, Case 2, and the Hille-Yosida theo-
rem,

M
(A= Xo)"
with the constant M coming from the Hille-Yosida estimates (3.15) for the

operator Az. Because Ag is a densely defined and closed operator, it is the
generator of a positive semigroup. 0O

A = Ap) " < IAM = Ag) ™" <

10.5.4 An Application to Conservative Boundary Conditions
Let us recall that by Ay we denoted the operator

AHf = Af7
D(Ag) ={f € D(A); Tsf € Li(D+,dps),T_f = HT, f}.

If H is dissipative, that is, if | H|| < 1, then, by Proposition 10.45, the function
f=1Lxg+C\H(I — M\H) 'G,g, (10.177)

where A > 0 and g € X = Ly(A,dp), is well defined because it is given by
the absolutely convergent series (10.166). Thus it also satisfies the equation
(M — Ag)f = g. Moreover, by Theorem 10.46, Ay is the generator of a
Co-semigroup of contractions (G, (t))¢>0 which is positive if H > 0.

The aim of this subsection is to extend the generation results to the case
of the boundary operator H which satisfies

(j) H =05
() 5]} =1.
The analysis of this subsection is based on [18] and to some extent parallels

the theory provided in Theorem 5.2 and the theory of extensions discussed in
Section 6.3. The following lemma uses the ideas of Theorem 5.2.

Lemma 10.49. Let H be a boundary operator satisfying H > 0 and |H|| = 1.
Then, for all t > 0, the limit

GAH (t)g = 111'{17 GATH (t)g (10178)

ezists for any g € X and defines a substochastic semigroup.
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Proof. Let us fix A > 0 and 0 < g € X. Because ||[rH| = r, Theorem 10.46
implies that

(M = Avg) 'g = Lag+ CarH Y (MyrH)"Ghg

n=0

for any r € (0,1). The function r — (A — A, )~ 1g is positive and increasing.
Hence, arguing as in Theorem 5.2, we obtain the existence of a bounded linear
operator in X defined as

R(\)g = lim (AT — A) g =Lag+ > CAH(MyH)"Gyrg  (10.179)
Tl n=0

which satisfies 1
IRN)gll < S llall
To prove that ImR(\) is dense in X', we observe that if f € C§°(A), then
M = Arg)f =M - A)f =g
for all » € (0,1) and hence
M = Au)rg=f— f=R\Ng

as 7 — 17. Thus C§°(A) C ImR(A) and therefore the latter is dense in
X. The Trotter-Kato theorem (Theorem 3.43) implies then that there exists
an operator Ay such that R(\) = (A — Ag)~! holds. This operator is the
generator of a Cp-semigroup (G, (t))i>0, and for all ¢ > 0, f € X,

G-AH (t)f = 111{17 GATH (t)fv
T—
and the convergence is uniform in ¢ in compact subsets of [0,00). O

Next we characterise the generator Ay of the semigroup (G (t))i>o0-
This is done by the methods analogous to those of Section 6.3.

For the measure space (D_,du_), we denote by Ep_ the set of all ex-
tended real-valued measurable functions defined on (D_,du_). Obviously
Li(D_,du_) C Ep_. Let us consider the operator C := C; : L1(D_,p_) —
X, where Cy is defined by (10.163) with A = 1. Through the operator C
we construct a subset of Ep_, denoted hereafter Fp_, in the following way:
1 € Fp_ if and only if for every (¢n)neny C Li(D—, p—) with 0 < 4,1 |9] (see
Subsection 2.2.4)

sup C, € X.

neN
Because the construction of Fp is the same as that of F in Section 6.3 and
the operator C is one-to-one by (10.157), the following properties of the set
Fp_ can be proved exactly as in Lemma 6.17.
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Lemma 10.50. (a) IfvY € Fp_ and 0 <y <), then ¢y € Fp_.
(b) If v € Fp_, then v is finite almost everywhere.
(c) IF0< € Fp_ and (4, )nen, (V" Jner C Li(D_, ) satisfy 0 < g1 v
and 0 < Y1 4, then
sup Cl, = sup C!!.
neN neN
We repeat the same considerations for the operator H but for this we have to
assume, in addition to H > 0 and ||H|| = 1, that

(GiH) o< ¥ e Li(Dy,dpy) is such that HY = 0, then ¢ = 0.

Thus, for the measure space (D ,du ), we denote by Ep, the set of all the
extended real-valued measurable functions on (D, p14.) and define Fp, C Ep,
by the condition: ¥ € Fp, if and only if for every (¢y,)nen C L1(D4,dpuy)
with 0 < 9,1 |9
sup HY,, € Fp_. (10.180)
neN
Thanks to assumption (jjj), the next lemma follows as does Lemma 10.50,
from the proof of Lemma 6.17.

Lemma 10.51. (a) If Y € Fp, and 0 <9, <9, then ¥, € Fp,.
(b) If ¥ € Fp_, then ¥ is finite almost everywhere.
(c) If 0 <9 € Fp, and (9'n)nen, (9 n)nen C Li(Dy, py) satisfy 0 < 97,17 9
and 0 < 97 ¥, then

sup HY,, = sup HY"..

neN neN
The above properties allow us to define the extensions of the operators C, H
and M (where M := M; and M) was defined through (10.164)) following the
construction of Section 6.3. Thus, first for 0 < ¢ € Fp_, we define

Cy =sup Cy,, € X,
nenN

where (¥)nen C L1(D—,du_) satisfies 0 < v,,7 1 and then extend it to the
whole Fp_ by linearity. We have the following result.

Lemma 10.52. If ¢y € Fp_, then C¢p € D(A) and
ACy = Cap.

Proof. We can suppose that ¢ > 0. Then there exists {¢,} C L1(D_,du—)
such that 1,1 ¥ and for such ¢ we have

Cy =supCy,, € X.
neN
Because Li(A,du) is a K B-space, the sequence (C,,)nen converges to Cip
in X. Furthermore, for any n we have Ci, € D(A), with ACv,, = Ci,
by Theorem 10.43. Thus the sequence (AC%,,)nen converges in X too and,
because A is closed by the properties of the distributional derivative, we have

C € D(A) with ACy = Cyp. O
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From the Lebesgue monotone convergence theorem it follows that for ¢ €
Fp_ and x € 4,

Cupx) = e Jo 7 Orrletes sy (o(x £ (x),0)

ift_(x) < 0o, and 0 otherwise. Next we observe that for ¢ € Fp_ andy € D_,
we have

lim C(¥(p(y,0,t)) = ¥(y),

t—0+
whilst

-

Jim C((p(y,1,0)) = e~ o T ORI Ny oy 1 (y),0)

for p € Fp_,and y € D;\ Dy. Clearly, for y € D, the above limit is 0.
Thus we can define M : Fp_ — Ep, by

t_(¥)

Mip(y) = e~ Jo  HvlesODdsy oy 1 (y),0)), ye Dy
if t_(y) < oo and 0 otherwise. Finally, for 0 <9 € Fp, , we define

HY = sup HY,, € Fp_,
neN
where (¥,)nen C L1(D+, p4) is a sequence defined in (10.180) and for arbi-
trary ¥ € Fp, we extend this definition by linearity.

We can now provide a complete characterisation of the operator Ay along
the lines of Theorem 6.20.

Theorem 10.53. Suppose that the boundary operator H satisfies conditions
()-(37)- Then f € D(Ag) if and only if f € D(A), Ty f € Fp,, T_f € Fp_,
T_f=HT,f, and

nlLII;O [|[CH(MH)"T f]| = 0. (10.181)

For every f € D(Ap) we have Ay f = Af.

Proof. First suppose that f € D(Agy) and consider the function g defined by
g=(I—Ag)f € X. According to Lemma 10.49, f = (I — Ay)~'g can be
written using formula (10.179) with A = 1. In other words denoting, as before,
L= Ll, M = Ml, G = Gl, we have

f=Lg+Y CH(MH)"Gg. (10.182)

n=0

Therefore, if for any n > 0 we define

fo=Lg+> CH(MH)"Gg=Lg+CHY» (MH)"Gy; (10.183)
k=0 k=0
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then f,, € D(A) from Theorem 10.43 and f, — f asn — oo in X. As in
Lemma 10.52 we have ACY = C¥ hence

Afn = ALg+ ACHY (MH)*Gg= ALg+ CH» (MH)*Gyg
k=0 k=0
=ALg+ fo— Lg = fu —g;

hence,
lim Af,=f—g.
n—oo

Because A is closed, f € D(A) with Af = f —g; thatis,g = (I - A)f =
(I — Ag)f and therefore Af = Ap.
Next let us define

n n+1
Op =Ty fn=Gg+MHY (MH)*Gg=> (MH)"Gyg (10.184)
k=0 k=0
and .
Un=T_fo=HY (MH)*Gg= H,_,. (10.185)

k=0

Using these definitions we can rewrite (10.183) as
fn=Lg+CHY,_ 1 =Lg+ Cy, (10.186)
and from (10.184) and (10.185) we infer
My, = MHY,,_1 =1V, — Gg. (10.187)
Suppose now that g > 0 and define

¥ := sup ¥, P 1= sup Y.
neN neN

By Proposition 2.73 we also obtain f,, T f. This, together with (10.186), shows
that ¢ € Fp_ and
f=Lg+ Ci, (10.188)

whereas equation (10.185) and ¢ € Fp_ imply ¥ € Fp, with
b = HY. (10.189)
Furthermore, from (10.187) we see that

M := sup My,
neN

satisfies the equation
My =9 — Gg. (10.190)
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Because ¥ € Fp, and Gg € Li(D4,dpy) C Fp,, we see that My € Fp,.
Now, thanks to (10.188) and (10.190), we have

T_f=4q (10.191)

and
T f=Gg+Myp=19. (10.192)

To prove (10.181), first we show by induction that for all n > 0 we have:
(MH)™} € Fp,,
(MH)" 19 = (MH)™9 — (M H)"Gg (10.193)

and
f = fu+ CH(MH)" 1y, (10.194)

The assertion is true for n = 0. Indeed, then (10.193) coincides with (10.190),
and (10.188)~(10.190) imply

f = Lg+ CH(Gg + MHY);

which, upon noticing that H|z, (p, 4.,y = H and C|, (p_ a4u_) = C, gives

f=Lg+CHGg+ CHMH)Y = fo + CH(MH)®,

that is, (10.194) is proved for n = 0.

Now suppose that the assertion is true for n > 0. From (10.193) we immedi-
ately infer that (MH)"*'9 € Fp, and (MH)"*2¢ = (MH)"*'9— (M H)"*'Gy,
that is, (10.193) holds for n + 1. This, together with (10.194), gives us

f=fo+ CHMH)" " Gg + (MH)" ™29 = f,, .1 + CH(MH)" 29,

which is (10.194) for n + 1 and, because f, — f, (10.194) yields (10.181).

Let us now prove sufficiency; that is, supposing that f € D(A), T, f € Fp,,
T_feFp_ ,T-f = HTf, and ||[CHMH)"T} f|| — 0 as n — oo, we show
that f € D(Ay) with Ay f = Af. Indeed, given a function f satisfying the
above properties we define

g:(I_A)f7 w:T—.ﬂ 19:T+f

By Lemma 10.52 we can repeat the considerations contained in the proof of
Theorem 10.43 to show that f = Lg + C¢b which is formula (10.188). From
(10.188) we deduce (10.191) and (10.192). Assumption T_ f = HT f shows
that also (10.189) is satisfied. As previously, taking into account the definition
(10.183) of f,,, Egs. (10.188)(10.190) imply that, for any n, (MH)"9 € Fp_
and (10.194) holds . This, together with ||[CH(MH)"T, f|| — 0 as n — oo,
prove that f, — fin X as n — oo (i.e., that formula (10.182) holds). Thus
f € D(Ag) and clearly Agf = Af. O

An important property of the operator Ay is proved in the next lemma.
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Lemma 10.54. If f € D(Ap), thenvf € X.

Proof. Let us consider f = (I — Ag)~'g, where we can suppose that g > 0
and let f,, n € N, be defined by (10.183). Then f,, = Lg + C,, > 0 for any
n € Ny and, by (10.159),

/ (1+ ) fudp = / gl + / ndpi — / Iyt (10.195)
A 1 D_ D,

By (10.185) we know that v, = H,,_; for all n so that
/(lJrV)fndu = /gdu+ / HY, 1dp_ — /ﬁndu+. (10.196)
A A D_ Dy

Because the sequence (¥, )nen is positive, assumptions (j) and (jj) on H
imply

/Hﬁn,ld,u, < /19n,1d;ur (10.197)
D_ D,
so that
Jastadn < [ gt~ [ @020, (10.198)
A A D,

with the equality sign if (10.197) is the equality.
Because ¥, —,,—1 = (M H)" "G f and the sequence {fD+ (MH)""Gfdp.}
is decreasing by (10.165), there exists

B(f):= lim [ (MH)""'Gfdus >0, (10.199)

n—oo

Dy
which, together with (10.198), shows that vf € X with
Jasvsan< [gan—s00) (10.200)
A A
where again we have an equality if (10.197) is an equality. O

In the context of this problem it is natural to say that (G (t))i>0 is
honest if for any 0 < f € D(Ag),

a4 / G ()7 = G ()] = - / VG (8) fp = — |G oay (D f]].
A A
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In this case there is no leakage of particles through the boundary in accordance
with the assumption that the boundary operator is conservative. Clearly, if
v =0, then the honesty of (G4, (t))t>0 is equivalent to it being stochastic.

The considerations of this subsection are very similar to those of Chapter
6 with the operator H playing the role of the operator B. Therefore it is not
surprising that the condition for honesty should involve the functional § as in
Theorem 6.11. Indeed, we have the following result.

Corollary 10.55. The semigroup (G a,, (t))i>0 is honest if and only if || HI|| =
19| for all nonnegative & € L1(D4,duy) and B(f) =0 for all f € X.

Proof. We note that, because g = (I—A)f = f—Aof+vf, inequality (10.200)
can be rewritten as

/ Aofd < —B(f), (10.201)

A

with the equality sign if ||[HI|| = ||9]| for all 0 < 9 € Ly(Dy4,duy ). Further-
more, if §(f) =0 for all f € X, then

/Aofd,uzo

A

for all f € D(Apg) and this implies the honesty of the semigroup.

Conversely, honesty implies that (10.201) holds for all 0 < f € D(Ag) by
Lemma 10.54 which immediately yields 8(f) = 0 as 3 is a positive functional.
Finally, if ¥ € L1(D4,dpy), from (10.196) we obtain

/Hﬂdu_ = /ﬂdm..
D_

Dy
O

Remark 10.56. The above approach to noncontractive boundary conditions
was chosen to demonstrate the power of positivity techniques, which are the
central theme of this book. It is fair to say, however, that such problems can
also be considered from other points of view. The interested reader is referred
to [127, 114] for alternative approaches.

One might have noticed many similarities in the results obtained in this
section with the theory of substochastic semigroups developed in Chapter 6.
These are further exploited in [18] where, among others, a spectral approach
that parallels Theorem 4.3 is presented.
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Singularly Perturbed Inelastic Collision Models

11.1 Preliminaries

As we have seen in the previous chapter, models of kinetic theory can involve
a large variety of different phenomena, such as, for example, free streaming,
external field, and elastic and inelastic collisions. It is thus natural to investi-
gate what happens when some of these phenomena are significantly stronger
than others. In such cases, it is customary to derive a simpler approximate
description of the studied model by introducing suitable continuum, or hy-
drodynamic, quantities. Such a continuum approximation of kinetic theory
can be obtained mathematically by asymptotic analysis which, by introduc-
ing a suitable average of phase space particle density, reduces the number of
independent variables.

Different importance of particular physical phenomena in a mathematical
model can be accounted for by introducing nondimensional parameters related
to them and investigating the limit equation when these parameters become
very small or very large. The first analysis of this type was carried out by D.
Hilbert in his celebrated paper of 1912 [99], where he expanded the solution
of the nonlinear Boltzmann equation (10.1) into powers of a small parameter
(which in this case was the nondimensionalised mean free path of particles)
and obtained a class of approximate hydrodynamic solutions, valid when par-
ticle collisions are dominant. A few years later the Chapman—Enskog theory
appeared (see, e.g., [68]). This treated the problem of approximation of the
Boltzmann equation by fluid equations in a much more accurate way. Even if
it is difficult to explain without entering into details the difference between
the Hilbert and Chapman—Enskog theories, we can say that in the former it
is the solution that is expanded in power series of the small parameter (which
yields the Euler equations at the first level of approximation), whereas the
latter expands the equations yielding the much more accurate Navier—Stokes
system. For many years the Chapman—Enskog asymptotic procedure was used
successfully in physics and in practical applications, even if it missed rigor-
ous foundations, [90]. Asymptotic methods are extensively discussed in many
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monographs devoted to kinetic equations; the reader can be referred to the
monographs, [66], [159], and more recently, [67, 60].

In recent years, numerous papers attempting to put the asymptotic the-
ory of kinetic equations on a sound mathematical basis have appeared. In
particular, the Chapman—Enskog procedure for linear kinetic equations has
been well developed in a series of papers, [129, 130, 21, 22, 23, 24, 35] and the
monograph [131]. When applied to a linear kinetic equation with both elastic
and inelastic scattering terms, it produces, as possible hydrodynamic limits,
a number of mathematically challenging equations. As our main interest in
this book is to apply positivity techniques to analyse the solvability of vari-
ous equations, we focus on one particular, possibly the most interesting, limit
equation that combines diffusion and kinetic terms. A comprehensive survey
of other possibilities can be found in [131, 35] and references therein.

The exposition is divided into several sections. In Section 11.2 we present a
short overview of the compressed Chapman-Enskog asymptotic method used
to derive the limit equations, then the physical model is described in Section
11.3 and its mathematical analysis provided in Section 11.4. In Section 11.6 we
derive the limit equations, analyse them, and prove the convergence results.

11.2 The Asymptotic Procedure

The goal of this section is to give a concise overview of a powerful asymptotic
method, called the compressed asymptotic method, which is a modification of
the classical Chapman—FEnskog procedure for the Boltzmann equation. Here
we apply it to derive limit equations for various scalings of the inelastic colli-
sion model, described in detail in Section 11.3.

In order to introduce the method, let us consider a particular case of a
singularly perturbed abstract initial value problem

ofe 1 1
{ o :A0f€+EA1f5+€jA2fea (11.1)
fe(o) = fO’

where the presence of the small parameter € indicates that the phenomenon
modelled by the operator A, is stronger than that modelled by A;, which, in
turn, is more relevant than the one modelled by Aj.

In kinetic equations we are typically interested in situations when the col-
lision processes are dominant. If this is the case, the gaseous medium quickly
becomes homogenised with respect to velocities and starts to behave as a fluid
governed by a suitable hydrodynamic equation which should be the limit equa-
tion for (11.1) as € — 0 (the parameter € in such a case is related to the mean
free path between collisions).

A standard asymptotic approach is to look for a solution to (11.1) in the
form of a truncated power series
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F(E) = fo(t) + efi(t) + E folt) + -+ € ful(t),

and build up an algorithm to determine the coefficients fo, f1, f2,.-., fn by
equating coefficients that multiply like powers of €. Then f¢ n) (t) is an approx-
imation of order n to the solution f.(¢) of the original equation in the sense
that we should have

o) = £0(1) = o(e™), (11.2)

for 0 < ¢t < T, where T > 0 as ¢ — 0. It is important to note that the
zeroth-order approximation satisfies

AQfO(t) =0

which is the mathematical expression of the fact that the hydrodynamic ap-
proximation should be collision-free. For this reason the null-space of the
dominant collision operator is called the hydrodynamic space of the problem.

Because, in most cases, the limit equation involves less independent vari-
ables than the original one, the solution of the former cannot satisfy all bound-
ary and initial conditions of the latter. Such problems are thus called singularly
perturbed . If, for example, the approximation (11.2) does not hold in a neigh-
bourhood of ¢ = 0, then it is necessary to introduce an initial layer correction
by repeating the above procedure with rescaled time to improve the conver-
gence for small t. The original approximation which is valid only away from
t = 0 is referred to as the bulk approximation .

As we mentioned in Section 11.1, there are various methods of construct-
ing asymptotic expansions to kinetic equations. Here we use the compressed
Chapman-FEnskog procedure. The main feature of this method is that the hy-
drodynamic space is identified first and then the original problem is decom-
posed into two coupled problems: one for the hydrodynamic and the other
for the kinetic part of the solution. This is done by projecting the solution
and the operators onto the hydrodynamic space and its complement which is
called the kinetic space. Next we use the main idea of the Chapman-Enskog
method: as our primary interest is to find the hydrodynamic approximation of
the solution, we expand only the kinetic part of it, leaving the hydrodynamic
part unexpanded. After this we follow standard steps; that is, we substitute
the expansion into the equation and find equations for terms of the expansion
by equating coefficients at the same powers of e.

To find the initial layer correction we introduce a new time scale and per-
form the standard asymptotic analysis; that is, this time we expand both ki-
netic and hydrodynamic parts. An essential feature of the compressed method
is that the bulk and initial layer parts are coupled at t = 0 providing correct
initial conditions for the approximating equations which, in turn, yields a
small error of the approximation.

We illustrate an application of this method in Subsection 11.6.2 where
we derive a range of limit equations for various scalings of a linear Boltz-
mann equation with dominant elastic collisions, described in the next section.
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Readers interested in the details of the asymptotic analysis for other cases are
referred to the series of articles, [129, 130, 21, 22, 23, 24, 86, 72, 30, 64, 35, 43],
and the monograph [131].

11.3 The Model

In Section 10.4.4 we have already seen an inelastic collision model describing
electron transport through a semiconductor device. Inelastic collisions are also
important in other branches of kinetic theory, where they describe interactions
of point particles with composite systems, such as the interaction of high-
energy neutrons with nuclei, or the exchange of kinetic energy by low-energy
neutrons propagating in gas media or solids [88]. Despite many similarities, the
model described here is essentially different from the semiconductor model due
to presence of the microreversibility principle, described below, which makes
the collision operator inherently singular.

As in Chapter 10, we consider a gas of test particles having mass m,
endowed only with translational degrees of freedom, propagating through a
three-dimensional host medium of field particles having mass M. Such field
molecules are usually much heavier than the test particles and have quite
a complicated structure which in turn creates nontrivial internal degrees of
freedom. As is typical in the literature, here too such a structure is accounted
for in a semiclassical way, that is, by considering the molecules as point parti-
cles obeying the classical dynamics, endowed with a set of quantum numbers
which identify their internal quantised state. Each of the several (infinite, in
principle) discrete states corresponds to a specific energy level, and thus the
molecules in different states must be considered as separate species.

In our considerations we adopt the simplest possible assumption, namely,
that for the background particles only the first two energy levels are signifi-
cant. These two levels are: the ground state and the first excited level, which
are spaced by an energy gap AFE. In addition, we assume the background
to be at rest in thermodynamical equilibrium which determines the distribu-
tion functions of the two background species, and we consider the well-known
Lorentz gas limit m/M — 0. In other words, the test particles collide with
something like a rigid net — they can be deflected (elastic collisions) or ex-
change quanta of energy with the background (inelastic collisions), but the
classical continuous exchange of kinetic energy is ruled out. In each collision
the total mass, momentum, and energy of the interacting particles is con-
served, but the kinetic energy is conserved only in the elastic ones, because
in the inelastic encounters the quantity AE of kinetic energy of an impinging
particle is transferred to or from the internal energy of the field particle. As in
Chapter 10, here we also adopt the standard assumption of transport theory
that the interactions of the test particles with each other are negligible and
the evolution of the test particle distribution function f is fully determined
by the collisions with field particles. Moreover, as we mentioned above, the
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test particles do not affect the field particle distribution function due to their
much larger mass. This assumption makes the problem linear, at least with
respect to the test particles.

This subject is dealt with quite extensively in the literature. The essential
features are given partly in standard textbooks, [65, 83, 66], and partly in
some pioneering pieces of work, [78, 167, 113] (we quote only some of them
for the readers’ convenience, without pretending to be exhaustive). A detailed
analysis, based on the methods of kinetic theory, with an explicit derivation of
the collision integrals in terms of the scattering cross-sections, and under the
standard assumptions for the validity of the integro-differential Boltzmann
equation, can be found in some more recent papers, [88, 148, 25, 94].

The number densities of the particles in the ground and in the excited
states are constant; we denote them by n; and ns, respectively. The condition
of thermodynamical equilibrium relates them with each other through the
Boltzmann factor

—AE/kp®

b:=ng/ni =e <1,

where kp is the Boltzmann constant and © is the background temperature.
The time evolution of the distribution function f = f(r,v,t) of the test
particles is governed by the linear Boltzmann equation ,[88, 147],

Ouf = Aof +C°f +Cf, (11.3)
where Ay is the free streaming operator (see (10.8) and (10.24)) defined by
Aof =—v-Of,

and
(Cf)(r,ow) = —f(r,vw) / [n1gf(r,v,w - w') + n2gs(r,v,w - W] dw’
SE
+ / [nlgf(rv v,w - wl) + nQQS(rv U, w - w/)] f(rv vw')dw', (114)
5'2
is the elastic collision operator and the inelastic collision operator is given by
(C*f)(r,vw) =
— f(r,vw) / [nlgi(r, v,w - W) H(v —6) + nagh(r,v,w - w’)] dw’

SZ
+/ {nlgli(r,v+,w-w’)%f(r,mrw')
SQ
+nags(r,v_,w - w Y H(v — 5)%]“(1‘, v_w’)] dw'. (11.5)

The standard fivefold integral of kinetic theory (see (10.1)) has collapsed to a
twofold one because field particles are ‘frozen’ as a consequence of the Lorentz
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gas assumption. As before, v = vw is the velocity variable, with modulus
v € [0,00) and direction w € S? (the unit sphere in R?), vy = Vo2 + 42,
62 = 2AE/m, and H is the Heaviside function. Also, g{ and g§ are the elastic
collision frequencies for the scattering of the test particles with the background
molecules in the fundamental and excited state, respectively, and gi and g4
the inelastic collision frequencies for the endothermic and exothermic process,
respectively, which obey the microreversibility principle [113],

vg5(v) = Vg1 (v4). (11.6)

For v > §, one of these two relationships is redundant because the second
can be obtained from the first one by taking vy in place of v. For v < 4,
however, the first relationship gives g (v) = 0, the information which cannot
be recovered from the second and which expresses the fact that the excitation
cross-section must vanish when the kinetic energy of an incoming particle is
below the inelastic threshold AFE.

Notice that the elastic collision operator is the same as for the mono-
energetic neutron transport, [65], and that there are two possible target field
particles, whose relative importance is determined by the macroscopic collision
frequencies

Ok = Nkgy

(elastic scattering), and 4
8 = NGk

(inelastic scattering), with k& = 1,2, where na < nj. In the elastic process
the test particle speed remains unchanged and the global effect of scattering
is just isotropisation. In the inelastic collision operator the threshold effect
described below (11.6) is accounted for by the Heaviside function H, and one
may notice scattering-in contribution at the speed v from test particles at
speed vy before collision (down-scattering), as well as from test particles at
speed v_ before collision (up-scattering). If these were the only interaction
mechanisms present in the system, a test particle with a given initial kinetic
energy would attain, during its life, only kinetic energies which differ from the
initial one by integer multiples of the energy AFE. The test particles undergoing
only inelastic scattering are thus partitioned into separate equivalence classes,
modulo AE with respect to kinetic energy, which becomes a mere parameter
with the range in the interval (0, AE). This is actually the case in our model,
because the speed changes neither during free flight (force fields have been
neglected), nor under elastic scattering. This observation allows us to convert
(11.3) into an infinite system of equations of birth-and-death type; see Chapter
7. Such a form of (11.3) is advantageous in many cases; see the last part of
Subsection 10.4.4. Here we use it in Theorem 11.25.

At this point, we use the microreversibility conditions again to express
the inelastic collision frequencies in terms of only one of them, say, g,. Since
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the elastic frequencies o; are not correlated, they are both free. However,
they only appear in the collision operator in the combination o1 4+ o2, which
henceforth is denoted by o. For similar reasons, the only inelastic parameter
of interest, g, is renamed g. Thus, the collision operators in (11.4) and (11.5)
can be written in the more concise form:

(C°f)(r,vw) = —f(r,vw)/a(r,v,w-w')dw’+/a(r,v,w~w’)f(r,vw')dw’,

S2 S2
(11.7)
and

(C*F)(r,vw)
= —f(r,vw)/ [H(’U —dg(r,v,w-w') + b%g(r,u,w . w’)} dw’

SQ
+ = /g(r,v+,w cw') f(r,vpw)dw
v
SQ
+ b/H(v —0)g(r,v,w-w)f(r,v_w)dw'. (11.8)
S2

In general, we assume that o(r,v,w - w’) is a bounded measurable function:
0 < omin < o(r,v,2) < Omax < +00 (11.9)

for all (r,v,2) € R3 x [0,00) x [—1,1].
The independent inelastic collision frequency g = n;g} is assumed to sat-
isfy, for all (r,v,2) € R? x [§,00) x [~1,1],

0 < gmin(v?) < g(r,v,2) < ga&(v?) < 400, (11.10)

where g, 8max ¢ some constants and g is a positive continuous function
normalized so that g(d) = 1, and satisfying

g(v? + 6%) < Lg(v?), (11.11)

for some constant L > 0 and all v > 0. Note that due to microreversibility
conditions (11.6) there is no need to impose any condition on the behaviour
of g for v € [0, 9).

Remark 11.1. Condition (11.10) ensures that the leading role in the inelas-
tic scattering is played by the kinetic energy of interacting particles, whereas
(11.11) imposes some control over the changes of the collision frequency be-
tween the energy levels. This condition is obviously satisfied if g is a de-
creasing function or grows at most exponentially in v?. In particular, it
holds in the cases of physical interest where g is required to satisfy, for all
(r,v,2) € R? x [4,00) x [—1,1],
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0 < gmin¥® < 8(r,0,2) < grax?® (11.12)

with some s < 1 and constants g, i, &max (Possibly different from (11.10)).
Though the interaction potential here may be completely different, by analogy
with (10.2) and Subsection 10.1.2, the case with s = 1 is called the rigid
spheres collisions, the cases with 0 < s < 1 are called hard potentials with
angular cut-off, and the case s = 0 corresponds to Maxwell molecules and
s < 0 to soft potentials. In particular, from (11.9) we see that the elastic
scattering is governed by Maxwell type potentials.

Remark 11.2. Formally the structure of the inelastic collision operator (11.8)
is the same as that of the semiconductor collision operator (10.100): both
are integro-translational operators. However, the microreversibility principle
(11.6) introduces the inherent singularity v~! in the up-scattering operator
making it unbounded irrespective of the behaviour of the collision frequency
as v — 00, in contrast to the semiconductor equation.

11.4 Mathematical Properties of the Collision Operators

11.4.1 Spaces and Operators

In this subsection we introduce the function spaces relevant to further consid-
erations. Unlike in Chapter 10, here we need a clear distinction between spaces
of functions of r and v variables and thus the basic spaces X are represented
as

X = Ll(Rg’XU) =1L (R?NXT) = Ll(RE,v)v

where X, = L1(R2) for a = r,v. Most considerations are carried out in X,
with fixed r. Typically, if S, is an operator in X, (possibly depending on r as
a parameter), then by S we denote the extension of this operator to X. If S,
is unbounded in X,, with domain D(S,.), then S is considered on the natural
domain

D(S)={feX; f(r,)) € D(S,) fora.a.r, S.f € X}.

If S, does not depend on r, and it is clear from the context in which space it
acts, we omit the subscript r. The same convention is applied to operators S,
acting in X,.

Occasionally, if the above procedure can be reverted, for acting in X’ opera-
tor S we write S, or S, to denote this operator acting with r or v, respectively,
fixed as a parameter (that is, e.g., S, f = S(f ® 1) where f € X,, if the latter
defines an element of X,).

Asymptotic analysis requires some additional regularity of the data. Typ-
ically, the required regularity in the v variable is related to the integrability
with respect to a certain weight function and the required regularity in the r
variable is related to differentiability. Thus, we introduce
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Xpw = L1(R2, w(v)dv),
and for the typical ‘moment’ weight w(v) = w(v) = 1+ v*, k € Z, we denote
Xop = Li(R3, (1 +0%)dv).
Accordingly, we define
Xy = L1 (R}, Xo.0)

and
Xy = L1(R2, X, 1) (11.13)

If S is an operator in X with domain D(S), then the domain of its part in &}
(see (2.12)) is denoted by Dy(S).
We need two types of spaces combining these two types of regularity. We
define
X ={fecX 02fci, |8 <1} (11.14)

and
Xip,s = {f € Xi; 02f € D(S), 8| <1}, (11.15)

where, for the multi-index 8 = (31, B2, O3) with |8| = 81 + B2 + (3, we denoted
9P = 0P9P207% . This space can be normed by the natural graph norm.

In particular, the spaces X}, s and X, can be treated as Sobolev spaces of
order [ of functions taking values in Banach space Dy (S) or X, i, respectively.

11.4.2 The Inelastic Collision Operator

Let us return to the collision operator defined by (11.8). In this subsection r
plays the role of a parameter and hence we suppress it in the notation.

To avoid confusion we write down explicitly the definitions of the operators
which appear in our considerations. For a continuous function f we split the
inelastic collision operator C? as

C'f =-N'f+B'f,
defining
N'f=Nif+N.f, B'f=B.f+ B, (11.16)
where

(VL) = A WIF0) = (52 [ glos o)’ | 1)

S2

(N F)(v) = v (V)f(v) = [ H@? = 1) / g(v,w - w)dw | F(v)

S2
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(BL)(v) =2 / g0, w - w') (040" )du’

S2
(B.f)(v) =bH(v* — 1) /g(v,w ‘W) fv_w')dw'. (11.17)
S2
Accordingly, we define
Vi (v) = vi(v) + v (v) (11.18)
and ‘ A ‘
Cif=-N.f+B.f, C.f=-N.f+B.f. (11.19)

Thus, the terms with subscript ‘+’ describe the up-scattering, that is, scatter-
ing in which the particles gain energy, whereas ‘—’ refers to the down-scattering
in which the test particles lose energy.

We have to consider two distinct cases with regard to the behaviour of the
collision frequencies as v — oco. Thus we introduce the following definition.

Definition 11.3.

(i) By Model A we understand a model in which the function g, defined in
(11.10), is bounded on R? (e.g., Mazwell molecules or soft potentials).
(i1) By Model B we shall understand a model where g is unbounded as v — oo

(e.g., hard spheres).

Lemma 11.4. In Model A the down-scattering operator C* is bounded in X
(more precisely, extends to a bounded operator in X ).

Proof. 1t is enough to prove the statement in X,. Clearly, the multiplication
operator N* is bounded. Next, we have for a nonnegative f,

/[BZ v’ —/W) (:// g(vy,w - w')|f(vyw)|dw'dew | dv

2 g2
/(S// z,w - W) f(2w)|dw'dw | 22dz
2 g2
< 47Tgmaxsupg A llx. (11.20)

and this can be extended to the whole X, by positivity of B.. O

Due to the singularity of the multiplication operator Ni at v =0, we see
that the inelastic collision operator is not bounded in either model. In Model
A, the only singularity of the multiplication operator N is of the order of
v~ as v — 0 so that it is well defined on X_1; see (11.13). On the other hand,
in Model B, we have to take into account both the former and the singularity
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caused by the behaviour of g as v — oo. Note that in Model B any function
integrable with weight % is integrable. Accordingly, we have the following
result.

Proposition 11.5. (i) For Model A, the operator B® is well defined on X_,
and for f € X_q, . .
IB* fllx < [Iv" fllx- (11.21)

(ii) For Model B, the operator B' is well defined on X,: and for f € X,
1B flla < [V fl|x- (11.22)
(#ii) In both cases

/(*N"f + Bif)dvdr =0 (11.23)
R6

for f e X1 and f € X,:, respectively.

Proof. As the proofs of (i) and (ii) are identical, we focus on (ii) as it is more
general. As before, it is sufficient to prove the statements for f > 0 and in the
space X,. Using the positivity to change the order of integration, w-w’ = w'-w
and changing variables we obtain for B,

/[Bif](v')dv’ = b// /g(v,w W) flv_w)dw' | v dwdv

:b/%r //g(z+,w~w')f(zw’)dw'dw 22dz

= [INi flx, (11.24)

and, as in (11.20),

/ [Bif](V’)dV’=7v+v [ [ etwsw- o) oot | do
0

R3 2 g2
:/ //g(z,w'w/)f(zw')dw'dw 22dz
1 2 g2
= INLfllx, - (11.25)

The norm in L; is additive on positive elements, therefore we obtain (11.23)
and from the positivity of operators, estimates (11.21) and (11.22) follow
immediately. O
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11.4.3 The Elastic Collision Operator and Its Hydrodynamic Space

A crucial role in asymptotic theory is played by the so-called hydrodynamic
space, already mentioned in Section 11.2, which is the null-space of the domi-
nant collision operator (or operators) appearing in the model. The reason for
its importance is that the evolution in the null-space of a particular collision
operator is free from the collisions represented by this operator. In the kinetic
operator (11.61) we have an interplay of two types of collisions and, in princi-
ple, we can have two hydrodynamic spaces corresponding either to elastic, or
to inelastic, collisions. As we see later, if the elastic collisions are dominant,
which in the model is represented by C'¢ being divided by the highest power of
€, then the limit evolution as € — 0 is indeed elastic collision free. Conversely,
if the highest power of € appears at the inelastic collision operator C?, then
in the limit evolution the particles can only experience elastic collisions.

A full discussion of all possible cases can be found in [35]. Our main inter-
est here are models with dominating elastic collisions and hence we have to
characterise the relevant hydrodynamic space. Let us recall that the operator
C*®, given by (11.7), is made dimensionless by measuring v in units of § (which
becomes the unit in the new speed variable, labelled again by v). We have the
theorem:

Theorem 11.6. Let the assumptions of Section 11.3 be satisfied. Then the
operator C¢ is a bounded operator in X with the following properties.

(i) For any f € X and any nondecreasing function k we have

//i(f)Cefdvdr <0. (11.26)

R6

In particular, C¢ is dissipative.
(ii) The null-space of C° is given by

N(C®) ={f € X; fisindependent of w}. (11.27)

(iii) The range of C¢ is given by

W:=R(C% =« fedX,; /fdw =0;. (11.28)

S2

The spectral projection onto N(C*) (parallel to W) is given by

Pf = i/fdw. (11.29)

S2
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(tv) For f € W we have

/sign(f)C’ef(vw)dvdr < — 4o min|| f |l 2 (11.30)
]RG
and hence the spectral bound of C° satisfies s(C®) < —4mOmin.

Analogous properties hold in any weighted space La(R® w(v)dv) where w is a
measurable strictly positive (a.e.) function.

Proof. Again, because the variable r plays the role of a parameter, we drop
it from the notation and carry out the calculations in the space X = X,,.
Because o is symmetric in w and w’, for any g € L, (R3) we have

[ nwwiw = [ [ o o) (gow)(f(ew) - fww) dods’

S2 S2 52

—//U(ww cw') (g ) (f(vw') — f(vw))) dwdw’,
S2 5'2

hence

2 / (9C° 1) (vw)dw = / / 0 (0, ww") (g (0w) — g (0" ( (0w) — (v e
SQ 5'2 SQ

Taking any bounded nondecreasing function « : R — R we obtain

2 [ ()0 1) o) (11.31)

S2

= 7//U(v,w W (K(f(vw)) — k(f(vw")) (f(vw) — f(vw'))dwdw" < 0.

Integrating over the remaining variable we get the H-theorem. If, in particular,
we take k(t) = sign(t), we obtain

/sign(f)C’efdv <0

R3

which gives the dissipativity of C¢. This proves (i).

Assume that & is strictly increasing and let C¢f = 0. Then the left hand
side of (11.31) is zero, but due to strict monotonicity of x this is possible only
if

flow) = Fue), (11.32)
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for almost all v; that is, only functions independent of w can belong to the
kernel of C¢. On the other hand, such functions clearly belong to N(C*¢),
therefore the kernel of C° is given by (11.27).

Next we turn our attention to the solvability of

Af(v) + f(v) /a(v,w-w')dw’ — /o(v,w ‘W) f(vw')dw' = g(v) (11.33)

S2 52

for g € L1 (R?). Denote

W = feLl(R3);/fdw:0
5’2
For f € W we get

/ sign(f(vw))C® f (vw)dw

S2

=5 | [ otv.wo- @ (sign(f(uw)) = signl () (ww) ~ Flow) duwde

52 52

IA

L ain sign(f (vw)) f(vw)dwde’ + [ [ sign(f(vw)) f(vw')dwde’
o | [ [ //

2 g2 52 52

f//sign(f(vw))f(vw')dwdw’f//sign(f(vw/))f(vw)dwdw’
52 52 52 §2
= _47T0'mian||L1(5'2)a (1134)

where, upon integration with respect to v, we obtain that C¢|y — AI is dissi-
pative for A > —4mwon;,. Because C¢|y is bounded, it generates a semigroup,
and hence C¢|y, — AI must be m-dissipative, therefore if A\ > —47o iy, then
A€ p(C%lw).

It is also clear that the spectral projection onto N(C®) is given by (11.29)
which ends the proof of (iii)—(iv).

The statement for the Lo spaces follows in the same way as all operations
are first performed on the unit sphere and only later integrated with respect
to v to get the estimates valid on R3. O

11.5 Well-posedness of the Problem

In this section we prove the existence of the semigroup solving Eq. (11.3).
The analysis is similar to those of Sections 10.4 and 10.4.4; hence we leave
out many details.
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Because our main aim in this chapter is to carry out the asymptotic analy-
sis of the kinetic equation, we simplify the problem by assuming that 2 = RS
so that we do not have to worry about the boundary conditions and avoid
the boundary layer. However, most existence results can also be proved when
2 # RS by using the results of Section 10.3.

Following (11.17) and (11.18), we define v°(r,v) = [ o(r,v,w w’)dw’ and

2
recall that i

v(r,v) =v'(r,v) + v°(r,v) = vi(r,v) + V" (r,v) + v°(r, V), (11.35)

so that the operators N%, N’ defined in (11.19) are the operators of multipli-
cation by 4 and v, respectively. Accordingly, we denote by N the operator
of multiplication by v. Thus, by (11.10) we have

v(r,v) =0 ") asv— 0" (11.36)

uniformly for r € R3. Note that such defined v is locally integrable on RS so
that indeed the theory of Section 10.3 is applicable.
Consider first the transport problem

Of=Af =Agf —Nf=—-—vo.f—vf, (11.37)
where the free streaming operator Ag is defined by the differential expression
Xof = —v -0 f on the maximal domain

D(Ap) ={feX; v-0.f € X}, (11.38)

and the differentiation above is understood in the sense of distributions (see
(10.24)) whereas the operator N is defined on its natural domain

D(N)={feX; vfeX}
By Theorem 10.4 we have immediately:
Theorem 11.7. Let v satisfy (11.56). The family {Ga(t)}i>0 defined by
(Ga(®)f)(r,v) = e o vr=svVds g(p _ 4y ). (11.39)
is a positive strongly continuous semigroup of contractions on X. The gener-
ator of (Ga(t))i>o is the operator A= Ay — N defined on D(Ap) N D(N).

Denote _ _
Bu= B'u+ B, u€ D(N"), (11.40)

where B? is defined by (11.16) and (11.17), and B® is the gain part of the
elastic collision operator C¢; see (11.7):

[BCu)(r,vw) = [ o(r,v,w - w')u(r,vw’)dw’.

SQ



386 11 Singularly Perturbed Inelastic Collision Models

The semigroup generated by Ay is stochastic (see Remark 10.3) and (11.31)
shows that fRG C* fdvdr = 0, hence from Proposition 11.5 it follows that A+ B
satisfies

/(Au + Bu)drdv = /(—l/u + Bu)drdv = 0, (11.41)
RS RS
so that all assumptions of Corollary 5.17 are satisfied and we can state the
generation theorem for the full problem.

Theorem 11.8. Under the adopted assumptions, there exists a smallest sub-
stochastic strongly continuous semigroup (G (t))i>0 whose generator K is an
extension of A+ B.

Remark 11.9. It is important to note that the down-scattering and up-scattering
operators as well as the elastic scattering operators satisfy each, and in any
combination with each other, the assumptions of Corollary 5.17. Thus, in par-
ticular, Ag — N} on domain D(Ag) N D(N%) = D(Ag) N D(N) generates a
substochastic semigroup, say (Z% (t));>0, given by (11.39) with v replaced by
VY and consequently there exists the extension K% of Ay — N{ + B’ that
generates positive semigroups of contractions as in Theorem 11.8.

Our aim now is to characterise the generator K.

11.5.1 Model A

Let us recall that in the Model A we require g to be bounded on R® so
that the only singularity of v comes from v, and is caused by the division
by v. Moreover, by Theorem 11.6 the operator C¢ is bounded thus it does
not influence the generation results and hence in the considerations below we
assume that it is equal to zero; that is, C = C* (and consequently B = B?
and v = ).

To analyse this model we use an abstract result, the origin of which can be
traced back to [14], where it was used in a different context and with a rather
long proof involving the change of order of iterations in the Duhamel formula
(5.36). Below we provide a simple and more general proof of this result. Let
us recall the notation Ly = (A — A)~%.

Proposition 11.10. If there exist constants My, Mo such that for any f €
D(A) we have

M
PNEE I (11.42)

and
IvBf| < Mallv S, (11.43)

then K = A+ B.
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Proof. By (11.41), we have for f € Xy

[(BL\)* ' f|| = |BLA(BL))* f|| = [[vLA(BLy)* f|| < % lvBLA(BLy) |

MlMQ M1M2
A

IN

[P LA(BLA) ™ fll = ——(BL)" I,

so that by induction the series > p- ((BL))*f is convergent if X\ > M; M.
The extension of convergence to arbitrary elements of X’ is done by linearity.
Thus K = A + B by Proposition 5.11 (or Proposition 4.7). O

Remark 11.11. If Ag = 0, that is, if we deal with a spatially homogeneous
case, then the above proposition simplifies to a Desch perturbation result.
If fact, from Proposition 11.5 we have

IBfI < llvfll

for f € D(N). Hence, condition (11.43) shows that B is a continuous operator
in D(N) and therefore —N + B is a generator of a semigroup, by Corollary
4.10, without resorting to the additional condition (11.42).

Theorem 11.12. The operator K% = Ay — Nz + B is the generator of a
semigroup of contractions.

Proof. By Remark 11.9, there is an extension K 2 Ay — N% + B’ that
generates a semigroup of contractions (G Ki (t))e>0 and we can use Proposition

11.10 for v = V% and B = B,. Moreover, by (11.10) and (11.17) we have

Ambg, i —tg(v? + 1) < V1 (r,v) < dnbg,. g0 + 1), (11.44)
v v

and, as g is bounded, We can take this bound to be 1. Thus, for f € D(N%)
and Ly = (Al — ANl ) , we arrive at the estimate

A af < tmbg [ | Z807 1) [ [1ZL @) rv)ivat | av
0 R3

R3

< 47rbgmax/%g(v + 1)/6_’\t|f z,v)|dtdzdv

RS 0
47bg,.,,
= %/UJF (v? 4 1)|f(z,V)|dzdv
RS
< ggmdx /Vi(z,v)|f(z,v)|dde: T1||u‘+f|\, (11.45)

A
R6
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where My = g,,.../8min and we used the fact that in the Model A the function
v is bounded as v — co. Next, by (11.11),

+oo
vt B f|| < 16ﬂ2b2gmax// /v+g(02 + 1) f(r,v_w)vdv | dw'dr
R3 52 1
/22 + 2g(2%2 4+ 2
:167T2b2gmax// / : f(z s )f(r,zw’)z2dz dw'dr
R3 52 0
< 16\/§7r2b2Lgmax// / Lg(= + )f(r, 2w')22dz| dw' dr
z
R? 52 \0
< 4\/§wa§1&||1/1]€||, (11.46)

where we used v/ 2242/Vz22+1< V2. Hence, Proposition 11.10 yields K. =
Ag—N. + B, =A,+C'. O

Because in the Model A of collisions both down-scattering and elastic
scattering operators are bounded, we immediately obtain the main generation
theorem.

Theorem 11.13. Let us consider Model A of collisions. Then the generator K
of (Gk(t))t>0 coincides with Ag— N+ B defined on D(K) = D(Ag)ND(N) =
D(A()) NnNX_q.

11.5.2 Model B

In this subsection we deal with the case where the inelastic collision frequency
is unbounded for large energies. We use the technique of extensions developed
in Section 6.3.

The counterpart of Lemma 9.11 reads as follows.

Lemma 11.14. If f € Fy, then f € L1(R2 x {v € R3, a7 < v? < a}) for
any 0 < a < oo.

Proof. We know that Lf € X ; that is, because L is given by the same integral
expression as R(1, A),

[eS) t
//exp - /l/ r—sv,v)ds | f(r—tv,v)dtdrdv
R6 0 0

[es) t
:/f(z,v) /eXp —t—/y(z+7’v,v)d7' dt | dzdv < oo.
RS 0 0
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From (11.10) and (11.35) we infer that for any a, there is M such that 0 <
v(r,v) < M for all (r,v) such that r € R® and a=! < v < a. For such (r,v)
we have

o] t

1
/exp —t—/ (r+7v,v)dr dtZl—kM
0 0

and because f > 0, it must be integrable over the stipulated region. 0O

We can now state and prove the main theorem about the generator for
Model B. The theorem and its proof are similar to Theorem 10.31; the absence
of the external field and of the boundary conditions, however, make Lemma
10.25 superfluous and allow us to prove a slightly stronger result.

Theorem 11.15. Define

Mk = sup g(r,v,z),
reR3 k<v?2<k+1,-1<z<1
my = inf g(r,v, 2). (11.47)

reR3 k<v2<k+4+1,-1<z<1

Then K = A+ B if either

> 1
— = 00, (11.48)
kgl M,
or, for all sufficiently large k,
mg—1
> b. 11.49
L (11.49)

Remark 11.16. For collision frequencies given by (11.12), we see that (11.48)
is valid if s < 2, thus it covers most physically relevant cases, from hard
spheres to soft potentials. Condition (11.49) is similar to (10.107) (with b =
1/a) but slightly stronger, as we do not require strict inequality imposed in
(10.107) by the constant ¢ < 1. Classes of collision frequencies satisfying
(11.49) are the same as introduced in Example 10.30. In particular, for the
inverse power potentials satisfying Eq. (11.12), condition (11.49) is satisfied
for any s provided g,in/8max > -

Proof. Let us take f € F such that — f+BLf € X and denote V}, = {v; 1/k <
v? < k}. Then

/(—f(r,v)+(BLf)(r,v))drdv— lim // + (BLf)(r,v)) dvdr.

RS R3 Vi

By Lemma 11.14, f € L;(R3 x V4), so BLf has the same property, and the
integral under the limit sign can be split as
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// (r,v) + (BLf)(r,v)) dvdr = — //frvdvdr

R3 Vi R3 Vi

—|—//(BLf)(r,v)dvdr.

R3 Vi

By the Fubini theorem we can consider ka (BLf)(r,v)dv for almost every r,
so for the time being we suppress the r variable. Changing variables we obtain
(for k > 1) for any integrable h

/( dv_b// / z+,w~w’)h(zw)z+ 22dzdw’ dw

S252 0
vk

/( dv+// (N*h dvf/ / (NLh)(v)dv.
0

52 VE—1
1/Vk
Because the integral in the first line exists, the integral [q,fy"" " (
also exists (being over a smaller region).
In the same way

NLh)(v)dv

V1+1/k E+1

/ (B g)(v)dv = / (N h)(v)dv — / / (N h) (v)dv+ / / (N h)(v)dv

Vi Vi sz 1 S22k

JEomir = [(vgwav.

Vi Vi

and

Returning to the dependence on r, let us define

1/Vk V1+1/k

Dk:// /( )(r, v)dvdr, // / B (x, v)dvr,

R3 52 0 R3 S2
VEFI vk

C’k_///(Nhrvdvdr—/// h)(r, v)dvdr

R3 S2 R3 S2 /k—1

/// / 0w - @) (h(r,vw) = bh(r, v_w)) v*dvdw dwdr.

R3 52 §2 /&

]

Thus, for h = Lf we have
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//BLfdvdr://VLfdvdr—i—Dk—l—Ek—l—Ck.

R3 Vi R3 Vi

Changing the order of integration in the first term, which is justified by the
positivity of the integrand, we find

//nydvdr://f(r,v)drdv—//Lfdrdv.

R3 Vi R3 Vi R3 Vi

Thus

/Lfdrdv+/(—f+BLf) drdv = lim (Dy + By + Cy),

RS RS

where we used the fact that Lf is integrable on R®. Next, because the term
E}, contains h = Lf € Ay and g is bounded over the domain of integration,
it is clear that Ej converges to zero as k — oo by Fubini’s and monotone
convergence theorems. Similarly Dy — 0, thus C} is also convergent and, to
be able to use Theorem 6.22, we have to prove that limy .., Cp > 0.

Let us introduce the notation

k—47rb// / h(r,v_w) 2dvdwdr

R3 2
\/W
Hy, = 4n / h(r, vw)v? dvdwdr
R3 52 /k
and observe that
VEFT
Hi_4 —47T/// , VW) 2dvdwdr—47r/// (r,z_w) —szzdwdr
R3 S2/k—1 R3 52 /%

so that

[k—1
3 hp < bHp_1 < hy, (11.50)

as the function z_/z is increasing.
At this point we split the proof. First we deal with the case of at most
quadratic growth of g. Using the introduced notation, we have

Ck 2 mka - Mkhk (1].5].)

Let us assume the contrary; that is, let limg_, o, Cx < 0, then for some constant
¢ > 0 we have for all sufficiently large k& > ko,
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—C Z mka - Mkhk. (1152)

We observe that because h is integrable, we have

oo
Z Hy < +o00,
k=ko

and so by (11.50),

S hy < +o0. (11.53)
k=ko
On the other hand, because myHy > 0, from (11.52) we obtain hy > ¢/ Mj.
However, from the assumption we have > = 1/M; = oo, so that (hx)ken
cannot be summable.

Let us turn our attention to the next case, which is analogous to Theorem
10.31. We use (11.50) to write (11.51) as the recurrence

Ck Z ,Ukhk+1 - kahk, (1154)

where pr = mp\/k/k+ 1. If klim Cr < 0, then for some constant ¢ > 0 we
—00

have M
c
hip1 < —— + —2hy,
Mk Kk

for all sufficiently large k. By induction we find that

l—r
! M M
hko-‘rl < - Zbl r H ko+l—s + hy bl H MEo+s
Hko+1—1r=1 a1 Mko+l—s—1 a0 HMko+s

-1 i 1
My 45 c =1 (1) Hhots—1
— o [ et [ - = Brorazl 4 py ),
=0 /Lk0+5 ( kao zZ:O b 1 Mk0+s 0

where we used the convention H2:1 = 1. From this inequality we see that if

> 1 o Hho+s—1
Z Brots—1 _ | 11.55
;::o <b> 0 Migts ( )

then the right-hand side of the above inequality will eventually become nega-
tive, contradicting the nonnegativity of hj. From the assumption (11.49) for
sufficiently large k we have

<1> Mko+sl>H\/ko+8—1:\/ ko .,
b =1 Mk0+s k‘o+8 k‘()+l
and therefore (11.55) holds.

Thus the theorem is proved. 0O
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11.6 Asymptotic Analysis

11.6.1 Derivation of the Scaled Equations

As we mentioned in Section 11.1, the relative importance of various terms
of an equation can be revealed by identifying typical reference quantities of
the model and introducing new nondimensional variables related to them. For
equation (11.3) we can introduce a typical length L, a typical time 7, and
typical values n*, gi, and g; for density and collision frequencies. With re-
gard to the molecular speed, as a typical value for it, we take the quantity ¢
corresponding to the inelastic transition. That introduces, in a natural way,
the Strouhal number, [66], Sh = L/d7, and the elastic and inelastic mean
collision-free times 6. = 1/n*g* and 6; = 1/n*g;. We assume that the elastic
collision frequencies are of the same order of magnitude, and that the param-
eter b, smaller than one, is O(1), but other situations might be investigated
analogously. Scaled space and time variables are again denoted by r and ¢,
and the same applies for the collision frequencies o and g, as well as for the
densities ny.

In many cases it is easier to use the dimensionless kinetic energy & = v2/5?
instead of adimensionalised speed, with the jump in the inelastic transition
equal to unity in the new scale. We use alternatively, v or £, depending on
which form is more convenient. As we do not mix these two notations within
a single logical unit, keeping the same names of all functions and coefficients
should not cause any misunderstanding.

In particular, the distribution function with split kinetic variables & and
w, is again labelled by f, and is given by

53
[ w) = - flow) : (11.56)
2 v = (525)1/2
Easy manipulations single out the ‘Knudsen’ numbers, [66],
66 91
Kn, = — Kn; = — (11.57)
T T

in front of the elastic and inelastic collision integrals, respectively. The kinetic
equation takes then the adimensionalized form
of af 1 1

1 1/2 _ e
TS Y T T '

C'f (11.58)
where the collision operators, written in terms of the energy &, are given by

(Cf) (€, w) = —f(f,w)/a(f,w-w')dw’+/a(§,w~w’)f(§,w’)dw’ (11.59)

52 S2

and
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(Cf)(€ w)
1/2
— f(6w) H(f—l)S[ gl w4 (1) S/ g6+ 1w o)do
€+ 1 1/2 ! ! !
+(5> 5Zg(§+1,w'w)f(ﬁJrl,w)dc.u
+bH(£—1)/g(§,w~w’)f(§—1,w’)dw’7 (11.60)

S2

where we disregarded the dependence on r. The numbers Sh, Kn., and Kn;
measure the relative importance of the streaming, elastic collisions, and inelas-
tic collisions in the balance equation for the test particle distribution function.
We further simplify our considerations by requiring that these three numbers
are power functions of €. Thus, we consider (11.58) in the form

%J;E = elpAofe + equefe + el’“CZfe’ (11.61)
where p, ¢, r are integers, and the streaming operator Ay written in terms of
energy is given by

7]
= _gl/2,. =
Ao & w - (11.62)

11.6.2 Limit Equations for Dominating Elastic Collisions

We are looking for the diffusive/hydrodynamic limits of (11.61) when elastic
collisions dominate. According to the considerations of Section 11.2, evolu-
tion should take place in the hydrodynamic space N(C*¢). To find the possible
limit equations we use the compressed Chapman—Enskog procedure; that is,
we separate the hydrodynamic part of the solution to the Boltzmann equa-
tion using the spectral projection P onto N(C*®) and then, by expanding the
remaining part into a series of ¢ we find, and finally discard, terms of higher
order in ¢, getting (at least formally) the limit hydrodynamic equation.

Let P be the projection defined by (11.29) and Q := I — P. By direct
integration of the inelastic collision operator C* over S? and by evaluating
C" on isotropic functions we see that PC?* = C*P only if g is isotropic, hence
in general PC'Q # QC'P (see also [35] and comments preceding Lemma
11.28). We apply these projections to both sides of (11.61) and, introducing
the notation

ve:Pfe and we:Qféa

we obtain the following system
1 1 ) 1 )
at’UE = prAOQU}E + 7PCZPUG + 7PCZQU}E, (1163)
€ € €

1 1 1 . 1 ) 1
Brwe = — QAPve + — QAoQue + - QCPue + Q0 Que + — QC“Qu,
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where we have already used the fact that because Pf is independent of w
and Ap is linear in w, PA)P = 0 (see [32]). Because we assumed that the
elastic collisions are dominant, we must assume that ¢ > max{p,r}. Because
we are looking for time dependent limit equations for v, the order of the
time-derivative cannot be lower than the order of the other term containing
ve. This yields » < 0 and shows that p must be less than or equal to the index
k of the first nonzero term in the expansion of we = wg + ew; + 2wy + - - -.
Let us first consider the case when p = k. Inserting this expansion into the
second equation in (11.63) we obtain

€ (Opwo + €dpwy + - -+) = €7 PQAPv + €7 PQAQ(wo + ewy + -+ -)
+e17"QCPu, + €7 "QC ' Q(wg + ewy + - - -)
+QC°Q(wo + ewy + - - ).

Because ¢ > r and ¢ > p, we obtain
QC°Qup =0

which yields wy = 0, because QC*¢Q is invertible by Theorem 11.6. Clearly,
the first nonzero term in the expansion of w will be w; with k satisfying
k = min{q — p,q — r}. However, if g — p > g — r, then r > p, but r < 0 yields
p < 0 which contradicts the assumption that p = k. Thus k = ¢—p and ¢ = 2p
and, for any k, we obtain wy = —(QC*Q)~*QA¢Pv,. Inserting this wy, into the
the first equation in (11.63), discarding higher-order terms and changing the
notation from v, into p to emphasise the fact that the forthcoming equation is
only an approximating (limit) equation for v, we obtain this limit equation,
independent of €, in the form

Oip = —PAQ(QCQ) QA Pp + PC'Pp, if r=0, (11.64)

and
Oip = —PAQ(QC*Q) *QA(Pp, if r<o. (11.65)

If p < k, then the power of the factor multiplying PA,Q(QC*Q)1QAPp
is positive and therefore this term is negligible when € tends to zero. Then the
possible limit equations are

dyp = PC'Pp, if r=0, (11.66)

and
Oip =0, if r<0. (11.67)

As we mentioned before, our main interest is the solvability of equations
(11.64)—(11.66) (Eq. (11.67) being trivial). However, to justify the need for
some special spaces which we are working in, we derive and discuss all asymp-
totic terms relevant at the level of approximation of (11.64)-(11.66). Accord-
ing to the compressed Chapman—Enskog asymptotic procedure sketched be-
fore, the asymptotic solution is sought as a sum of bulk and initial layer terms
of the form
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Je(t,7) = Jelt) + fe(7) = p(t) + wo(t) + ey (t) + -+ -
+00(7) + €p1(7) + - -+ wo(7) + ewr (7) +---,  (11.68)

where 7 = t/€e" for some n € N. The terms
0, 00,P1--- € N(C®)
are called the hydrodynamic part of the expansion, whereas
Wo, W1, ..., 0o, W1, ... € N(C)*

are called the kinetic part of the expansion.

Moreover, the terms depending on ¢ are referred to as the bulk part of
the asymptotic expansion and the terms depending on 7 are known as the
initial layer; they are to be determined independently of each other. Note that
in accordance with the compressed Chapman—FEnskog procedure discussed in
Section 11.2, the hydrodynamic term p of the bulk part of the expansion is
not expanded.

The number of terms in each expansion and the value of n in the definition
of 7 are determined after having written the formal equations for the error,
so that the error could be conjectured to be of the required order.

11.6.3 Full Asymptotic Expansion
First let us consider the Boltzmann equation
1 1 . ;
Opfe = EAofe + 6—20 fe+C'fe, (11.69)

which, as shown in Subsection 11.6.2, should have the kinetic-diffusion equa-
tion (11.64) as its limit. Here we have to supplement (11.64) with bulk and
initial layer correctors which enable us to obtain the desired error estimates.

We start with the system (11.63) where, according to (11.69), we put
p=1,qg=2,r=0. Hence

Opve = 1]P’A()Qu)6 + PC'Pv, + PC'Qu.,
€
1 1 . 1 .
Opwe = EQAOPUE-F EQAOQwe+QCZQwE+EchQwE+QClPUG, (11.70)

with initial conditions

Inserting (11.68) into (11.70) and equating the terms at the same powers of
¢, we find that we have to take 7 = t/€2 and thus we obtain the following
system,
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dip = —PAQ(QC Q) ' QAP + PC'Pp, (11.71)
QC“Quwo = 0,

QC°Quw;y + QAoPp = 0,

QCQuw; + QA4oQw; + QC'Pp = 0,

0.7 = 0, (11.72)
d-wo = QC“Qu, (11.73)

which, as we show, defines enough terms of the asymptotic expansion to ob-
tain, at least formally, the convergence of the error to zero as € — 0.

To show this, let us assume for the time being that all the above equa-
tions can be solved and that the solutions are sufficiently regular to make
the manipulations that follow available. It can be proved that at this level of
approximation the correct initial values for (11.71) and (11.73) are

p(0)=v,  dp(0) =w.

Note that the equations for w; and ws do not require any ‘side’ conditions,
and the solution to (11.72) is determined by the stipulated decay to zero as
7 — 00. Thus we obtain wy = pg = 0 and

W = —(QCQ)'QA(Pp,
@ = —(QC°Q) ™1 (QAQw: + QC'Pp)
= (QC°Q) ™1 (QAQ(QC*Q)~'QAP — QC'P)p,
Wy = "y (11.74)
Hence, we take the pair f,,, := (p, Wo + €w; + €2ws) as the approximation
of fo = (ve,w,); the error of this approximation is given by
Ye = Ve — p
Ze = W — Wy — €W — €2Dy. (11.75)
Returning to the original equation (11.69), we write the error as e, = y.+ 2z, =

fe = fapp- If we assume that f€ D(Ag) N D(C?) then, because we work with
Model A, Theorem 11.13 yields f.(t) € D(Ag) N D(C?) for t > 0. Hence, if
the components of f,,, are sufficiently regular (which is proved in Lemmas
11.27-11.29), then the error e, is a classical solution of the problem

1 . 1
Orec — —Agec — C'ec — 5 C%. (11.76)
€ ‘ € ‘ A
= G(AoQ’II)Q + QCZQ’U_}l + GQCZQ'IDQ — 8{@1 — 68tw2 + PClQ(’JH + 6@2))
1 _ . .
+ ;Ao@wo + QC"Qup + PC*Quy

ec(0) = €(QC°Q) ™' QAP —€*(QCQ) "(QAQ(QC Q) ' QAP—QC P)o .
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By Theorem 11.8, the semigroup solving this equation is contractive in AX’;
thus using (3.74) we obtain the estimate

llec(t)]]
€| (QCQ) "L QAPY —e(QC°Q) " (QAQ(QC*Q) *QAP — QCPY|

t
te / | 46Q(s) + QC'Q@n () + €QC Qiba(s) — Dyt (5) — €Dyl (s)
0
+ ]P’CZQ(wl(s) + ews(s))]|ds

t
+%/HAOQ@O(S/EQ)—&-EQCiQfEO(s/eQ)-&-]P’Ci(@zﬂo(s/eg)“ds. (11.77)
0

From the above inequality we see that if all expressions in the first two terms
exist and are bounded in ¢ on [0,%], 0 < ty < oo, then the contribution of
this integral is of the order of € on this interval. As far as the second integral
is concerned, the initial layer is assumed to be exponentially decaying with
T — 00, that is, to behave as e —wt/€ for some w > 0. If this property is
preserved after having operated on wy with the operators 4oQ and QC‘Q,
then upon integration we obtain that the contribution of this term to the
total error is also of the order of €; thus |lec||x = O(e) and the convergence
is proved. It is worthwhile to note here that as the terms ew;, and e?w, are
also of order O(e), they can be discarded in the error estimates; see Theorem
11.30. These terms are, however, essential in the derivation of the asymptotic
formulae to close the resulting system of equations.

Hence, we see that in order for estimate (11.77) to hold, we must prove that
all terms exist and have the desired regularity. For instance, for Q AgQws to be
well defined we need the existence of A3p or, in other words, the solvability of
(11.64) in the moment space X3 together with threefold differentiability with
respect to r. We also need certain regularity of the moments with respect to
the operator C?; that is, the existence of QC'Qusy requires that AZp be in

D(C?), and so on.

11.6.4 The Abstract Diffusion Operator
Let us return to the the abstract ‘diffusion’ operator of (11.64), given by
D = —PA4,Q(QCQ) QAP (11.78)

with the operator Ay defined by Ay = —vw - O;.
Proposition 11.17. We have

(Dp)(r,v) = v?0:(d(r,v)dpp(r,v)), (11.79)
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and there is a constant dmin > 0 such that d(r,v) > dpin for almost all
r,v. Moreover, if r — o(r,v,w - w’) is uniformly differentiable with respect
to (v,w - w') and |Opo(r,v,w - W')| is bounded, then Opd(r,v) is bounded on
R? x [0, 00).

Proof. First, as in (11.63), we have PAgPf = 0. Next
1
PAS)(r0) =~ 00+ [ wi(r,v,w)de
™
SQ

and PAgQ = PAy, QAP = AgP. By Theorem 11.6, QC*cQ is invertible on
W ={f € X; Pf =0}. It is also homogeneous in v, and because w - 9pp € W,
we obtain

2

[Dpl(r,v) = _Z?ar' /(w(QC"‘Q)_lw - Oep(r, v))dw
v2 3 2
= 1, 22 O (di (1, 0)0r,p(x,0) (11.80)

where d;; = [g, wiFjdw and F} is a unique solution in W to the equation
F; = —(QC*Q)'w;. Explicitly, we have

Fj(r,v)/a(r,v,w-w’)dw’ - /U(r,v,w~w’)Fj(r,vw’)dw’ =wj. (11.81)
52 52

Let us fix j € {1,2,3}. It follows then that the right hand side of the above
equation, as well as its coefficients, is invariant with respect to the rotations
orthogonal to the versor e;. This can be ascertained by introducing spherical
coordinates with ¢ measuring the angle between w and e; and 6 related to the
rotations of the plane perpendicular to e;. Then, if , ¢ and ¢’, ¢’ correspond,
respectively, to w and w’, it is clear that w - w’ = cos(f — §’)sinpsin ¢’ +
cos ¢ cos ¢'. Thus, writing fsz o(r,v,w - w')dw' as the iterated integral and
integrating over ' € [0,27], we find that this integral is independent of 6,
that is, it is invariant with respect to the rotations about e;. This indicates
that we should look for solutions depending only on j coordinate of w. Thus,
inserting F(r,vw) = Fj(r,v,w;) into Eq. (11.81) and performing the above-
mentioned integration with respect to # we arrive at an equation with the
same structure and we can therefore apply the considerations of Theorem 11.6
to obtain a solution. This is also a solution to the original equation (11.81)
and because this equation is uniquely solvable in W, F  is the sought solution
of Eq. (11.81). Hence,

- di if j=1
dij(r,v) = /wiFj(rw,wj)dw = { 0if 41

S2
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Using the fact that Eq. (11.81) does not change if we alter j, we reach the
conclusion that d;(r,v) = d(r,v) for i = 1,2, 3. To prove that d(r,v) > dpyin >
0 we use the fact that Lo(S?) C L1(S?) and w;j € Lo(S?). Thus any Lo (S?)-
solution to Eq. (11.81) is also the L;(S?)-solution. To fill in the technical
details we observe first that, under the assumptions on o, the operator C*€ is a
bounded operator in Ly(S?) (for almost every r,v). Moreover, for f belonging
to

Wy = feLQ(S2);/fdw=0
32

we obtain (dropping for a moment unessential dependence on r and v)

Juespwido = = [ [ otw o)) - 1)(7w) - 1) dwde

S2 52 52

< (S/ S/ Plwds’ + [ [ £

52 52
= [ [ r@rshiwds - [ [ 1) fw)dods
52 92 52 52

= —47T0'min||fH%2(52)'

This shows that QC*Q is invertible in Ws. Let f = —(QC°Q)'w; = F;; then

d = /wzﬁ’l(wl)dw = —/f(QC’le)dw Z 47r0min||f”%2(,5‘2)~
52 52
The last statement follows from the lemma below.
Lemma 11.18. Let {H(s)}seqn, where 2 C R™, be a strongly continuous fam-
ily of invertible linear operators between Banach spaces X and 'Y which sat-
isfies infsen ||H(s)f|| = M| f| for some M > 0 and all f € X. For a given
f €Y, define

u(s) = [H(s)| .

Then u(s) is continuous on 2. Moreover, if {H(s)}scn is strongly differen-
tiable, then u is differentiable and if H'(s) is bounded on §2, then so is u'(s).

Proof. If H(s)u(s) = f, then according to the definition also H(s + h)u(s +
h) = f provided s, s + h € £2. Because

0=H(s+h)u(s+h) — H(s)u(s) = H(s + h)(u(s + h) —u(s))
+(H(s+h) — H(s))u(s),

we have
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u(s + h) — u(s) = —(H(s + )" [H(s + h) - H(s)[u(s).

Because ||(H (s+h))7!|| < 1/M for any h (and s) and H is strongly continuous,
we obtain continuity of w.
To prove differentiability, we write

(H(s+h))""f = (H(s)) ™" f = (H(s + h))""(f — H(s + h)(H(s))"" )
= (H(s+h)) " (H(s)g — H(s + h)g),

where f = H(s)g. Because H is strongly differentiable, we have H(s + h)g —
H(s)g = H'(s)g-h+ o(h) and thus we can write

(H(s+h)"f = (H(s)"'f = —(H(s)) " H'(s)g -
— ((H(s+ )™ = (H(s)) ™) H'(s)g - h = (H(s + 1))~ - o(h).
Because (H(s))™! is norm bounded, the last term divided by ||k| tends to

zero as ||h|| — 0. Furthermore, h/| k|| belongs to the unit sphere in R™, which
is compact, and hence the second term tends to zero by Corollary 2.12. Thus

((H(s))™)" = —(H(s)) " H'(s)(H(s))"". (11.82)
Finally, it is clear that if H'(s) is bounded, then the derivative of the inverse
is also bounded. O

Returning to the proof of the theorem, we see that the assumptions on
o ensure the differentiability of the operator QC°Q. Also, integrating (11.34)
with respect to v we obtain

Amomin | fllx <— /Sign(f)Cef(vw)dV < CFlixllsign(f)ll Lo sy = 1C°fllx,
RS
(11.83)
for f € QX, uniformly in r, which gives the required positive lower bound for
C¢|w . Hence, the assumptions of the lemma are satisfied and d is a differen-
tiable function of r with bounded derivative. O

In the next step we address the problem of the solvability of the Cauchy
problem for the ‘diffusion’ equation in X,

Opu(r,v,t) = v?0p(d(r, v)dpu(r, v, t)),
u(r,v,0) = u (r,v). (11.84)

By Proposition 11.17 we do not have any dependence on the angle w and thus
it is convenient to consider all problems in the modified space

X =L (R* xRy, dpty ), (11.85)

where
djty,, = v2drdv. (11.86)

We have the following theorem.
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Theorem 11.19. (a) The operators D, = v20,(d(r,v)d+) (v fized) defined
on the domains D(D,) = L12(R?) C X, for v > 0 and D(Do) = X,,
generate stochastic semigroups in X,, denoted hereafter by (Gp, (t))>0-

(b) The operator D with the domain

D(D) ={f € X; f(-,v) € D(D,), (r,v) — (Du.f)(r,v) € X'}
generates a stochastic semigroup (Gp(t))e>o0 in X.

Proof. By the second part of Proposition 11.17, we can use Example 4.14 to
obtain part (a) of the theorem.

To prove part (b), we denote by D the pointwise extension of v2D, to
L1(R? x Ry, dpy ). Then Proposition 3.28 implies that D generates a semi-
group of contractions in X. The positivity follows in a similar way.

To prove that this semigroup is conservative for positive initial data we first
consider the operators D, with fixed v > 0. It is clear, that for ¢ € C§°(R3)
we have

/ Dyédr = 0 (11.87)
R3
and because C§°(R?) is dense in L 2(R?), the above is valid for ¢ € Ly 2(R3?).

If we take 0 <u€ Ly 5(R3), then 0 < f(t) := Gp, (t)u € Ly o(R®) for t > 0.
Therefore

d d o
Sy, = [ 0.0k = [©u)ri =0
R3 R3
and thus 5 s
|G, (t)ullx, = [lulx,. (11.88)

Integration with respect to v yields the thesis for (Gp(t))i>0. O

11.6.5 Solvability of the Kinetic-Diffusion Equation

Next we turn our attention to the full diffusion-kinetic equation (11.64). We
start with a brief description of the kinetic term PC*PP. For v > 1 we denote

1
m(r,v) = E//g(r,v,w cw')dw'dw.

S2 G2

Because p = Pf is independent of w, we immediately obtain

[PC'Pf(r,v) = — (bz);m(r,mr) + H(v* — 1)m(r,v)> p(r,v)

+ (%m(r,vﬁp(r, vy) +bH (v* = 1)m(r, U)p(r’v*)) ’
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To be able to continue with the asymptotic procedure, we have to prove
the solvability of the following Cauchy problem.

dip(r,v) = 020, (d(r,v)0pp(r,v))
- ([w;_m(r,v+) + H(v? — 1)m(r,v)) p(r,v)

(SEmr, v )p(rvs) + H(? = Dm(r,v)p(r,v-))

+

<o

p(0) =

in X.
Let us define the multiplication operator,

bu +

Nl 0) = i ool o) = (PEm(r) + G = D(r.o) ) plevo)

which is the operator N averaged over S2. As in (11.17), we split it as

Npl(x,0) = N2 pl(r,0) + IV p(r, )
= (e, )pe,0) + H(? ~ Dm(r, 0)p(r, v).

We see that N is unbounded in X, due to Eq. (11.10), and by the same
assumption,

c1s(v) < n(r,v) < cxc(v), (11.89)
where
() = buyg(v? +1) —|—ff(v2 — 1)vg(v?) (11.90)
and
1 =478,  C2 = ATE ax- (11.91)

Thus ¢(v) = O(v™1) in some neighbourhood of v = 0 and it possibly approaches
00 as v — 00.
By B we denote the sum of the other two operators

[Bol(x,v) = [B-pl(r,v) + [Bpl(r,v)
= (SEmr, v )p(rvs) + bH(® = Dmr,v)p(r,v-))

hence B is the isotropic version of the collision operator B*. Thus, as in Propo-
sition 11.5, we see that we can take D(B) = D(N'). We prove the following
theorem.

Theorem 11.20. There exists a substochastic semigroup, say (Gi(t))i>o0,
generated by an extension K of the operator (T,D(T)) = (D—N+B,D(D)N
D(N))



404 11 Singularly Perturbed Inelastic Collision Models

Proof. First, we define Dpy = D—N in X. Here v is a parameter, therefore we
consider the family of operators Dpr, = Dy, —n(-,v)I, v # 0, in X,.. Because D,
generates a semigroup of contractions on X,. and 7(-,v) is bounded, the oper-
ator (Da,w, D(Dy)) generates a semigroup of contractions, say (Gp, , (t)):>o0,
which satisfies, by (11.87),

NGon D760, =~ D) Gor OAC VN, (11.92)

for any 0 < f(-,v) € L1 2(R?). By Example 2.1, the positive cone of C§°(R™)
(contained in the positive cone of L; o(R?)) is dense in the positive cone of
L1(R3). Using this fact and (11.89) we obtain, by integration and Gronwall’s
lemma, that

eSO £ 0)x, < 1[Gy, OFIC0)x, < eSO £, 0)lx,, (11.93)

is valid for all 0 < f(-,v) € L1(R3). Using the positivity of the semigroup we
can extend the right inequality to the whole of L;(R?):

[[Gox.. ) F1C )l x, < exp(—crs()B)]If (- v)]lx, - (11.94)

Because (Gp,,(t))i>0 is positive for any v # 0, by Proposition 3.28 the
operator D — N generates a positive semigroup of contractions on X. We
provide a more precise characterization of the domain of the generator.

First, using (11.94) and the semigroup representation of the resolvent, we
obtain, for A > 0,

. [T~ _ b
(RO D) ) (0) i, < / O ) = (),
(11.95)
so that for any f € X
cos(v) Ca
[n(-;v)[R(X, Do) £1(5 0) || x, < mllf(wv)ﬂm < allf(wv)HXro
(11.96)
Hence c
INR(A, D) fllx < fllfo (11.97)

and so D(Dy) C D(N).
Using the fact that for a fixed v the operator 7(-,v)I is bounded, we obtain
the following relation for resolvents in X,

R()‘v DN,U) = R()" Dv)[l - 77('7 U)R(/\7 DNﬂ))]'

Because the operator N'R(\, D) is bounded in X by Eq. (11.97), the above
equation shows that D(Dy) C D(D) and consequently D(Dy) € D(D) N
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D(N). On the other hand, by (3.67) we see that D(Dy) D D(D) N D(N) so
that
D(Dyr) = D(D) N D(N).

Next we note that for any 0 < f € X = L1 (R® x Ry, dpy ), we have

“+o0
/ Bf(r,v)v*dv
0

“+oo

_ / e, 0 ) oo +b [ (e, o)l e 0 ldo
1
+oo

/Hz —Dm(r, 2)f(r 2dz+b/ A )f(x,y)yPdy
0

N

O/ n(x, 0) f(x, v)0*do.

This, combined with (11.88), shows that all assumptions of the theory of
substochastic semigroups, Corollary 5.17, are satisfied and thus the theorem
is proved. O

The identification of the domain of K goes along the lines of Theorems
11.12, 11.13, and 11.15. Some technical details, however, are different. As
before, we consider Models A and B separately.

Model A

By Lemma 11.4, the down-scattering operator —N_ + B_ is bounded. We
have the theorem:

Theorem 11.21. The operator K;. = D — N, + By is the generator of a

semigroup of contractions. Thus, the generator KC of (G (t))i>0 coincides with
D — N + B defined on D(K) = D(D)N D(N) = D(D) N X_;.

Proof. The proof is the same as for Theorem 11.12 if one notices that to
prove the analogue of (11.45) requires only the contractivity of the semigroup
generated by D — Ny and for the analogue of (11.46) we use only A, and B
which have the same properties as Ni and Bﬁr, respectively. 0O

Model B

The following variant of Lemma 11.14 is relevant here.
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Lemma 11.22. If f € Fy, then f € Li(R3 x {v € Ry,a™! <v? < a},durn)
for any 0 < a < oco.

Proof. Let us first take f € X . Disregarding for a moment the v variable, we
have, by (11.93),

o0

/Lfdr: /R(l,DN,U)fdr:/e’t /GDN’U(t)fdr dt
R3 R3 0 3
/ 1
> [ emtleas()+]) / de | dt = ————— / dr.
a /6 ({R fdr cas(v) +1 far
0 3 R3

Integrating with respect to the measure v2dv we obtain

f(x,v)
/ [Lf](r,v)d,ur,u > / mdﬂr,v- (1198)
R3xR4+ R3xR4+

Now, any f € F, is a monotonic limit of nonnegative functions from &', so
passing to the limit in (11.98) we see that it is valid for any f € F, and, in
particular, by the monotonic convergence theorem, f/(coc + 1) is integrable.
Because 1/(cas + 1) can be zero only as v — 0,00, we obtain the thesis. O

At this point, we can state the main theorem about the generator for
Model B. The formulation of the theorem and most of the proof coincides
with that of Theorem 11.15.

Theorem 11.23. Define
My, = sup  m(r,v),
reR3 k<v2<k+1

mp =

inf : 11.
r R hov? <k Hm(r,v) (11.99)

Then K =D — N + B if either

— = 00, 11.100
S (11100
or, for all sufficiently large k,
Mi—1
>b. 11.101

Proof. As usual, we denote by B the extension of B defined by (6.37). Let us
take f € Fy such that —f + BLf € X and denote V;, = {v; 1/k < v? < k}.
Then
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/(—f(r>v>+(BLf)( )) dpte,p= lim // + (BLf)(r,v)) dpiro.

R3xRy R3 Vi

By Lemma 11.22, f € Li(R? x V4), so BLf has the same property and the
integral under the limit sign can be split as

// + (BLf)(r,v)) dptr = — //f ) dpr

R3 Vj, R3 Vi

// BLS)(r, 0)die v,

R3 Vi

and, following the proof of Theorem 11.15, we denote

1/Vk \/14+1/k

o= [ [ Wi, B== [ [ W
R3 O Rl
VE+L VE
Cr 7/ / (N g d,LLr v 7/ / (N+g)(1', U)d.ur,v

R3 /k—

/ / mlr, ) (g(r, 0) — by(r, v_)) i

Thus, for g = Lf we have

/ / BLfdyr., = / / nLfde.s + Dy + By + C.

R3 Vi R3 Vi

-

To evaluate the integral on the right hand side, we disregard for a moment
the variable v and assume first that 0 < f € L; o(R3) so that, using (11.92),
we can write

/UR(LDN’U)fdr_O/etRZnGN’U(t)fdrdt

]RS
o'} , d
=— ¢! ZCuu()fdt | dr= [ fdr— [ R(1,Dx,)fdr.
R3 0 R3 R3

Clearly, by density, we can extend the above equality to Li(R3®); (the left
hand side integral converges by (11.96)), and consequently we can write
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//nR (1,Dr0) fpir v z//fdum—//R(l,DN,v)fdur,v. (11.102)

Vi R3 Vi R3 Vi R3

Now let f € F,. Any such f is a monotonic limit of functions in Xy, hence we
can pass to the limit in the equality above, where the right hand side converges
because Lf € X and f is integrable over Vj, x R? (by Lemma 11.22).

Thus, (6.57) is given by

/Lfdrdv + / (=f+BLf)drdv = khm (D + Ey, + Cy),

RS RS

and the rest of the proof is identical to the proof of Theorem 11.15. O

11.6.6 Well-posedness in the Moment Spaces X

In the previous subsection we settled the question of the well-posedness of
the limit kinetic-diffusion equation in X'. However, as noted in the discussion
following (11.77), we need a similar result in the moment spaces X}, defined
by (11.13), for k < 3. This problem becomes considerably more involved and
to make any progress we have to adopt some simplifying assumptions on the
model and hence from now on we only consider the isotropic scattering of
Maxwell molecules. With this provision, the elastic scattering operator (11.7)
is given by

(C°N)(x,v) = —4dmo(r,v)f(r,v) + cr(r,v)/f(r,vw’)dw’, (11.103)

and the Maxwell molecule assumption yields that ¢ is a measurable function
satisfying
0 < Omin < 0(r,v) < Omax < +00

for all (r,v) € R3 x [0, 00[. Note that in this case the operator QC*Q, which
is important in the asymptotic analysis, is given by

QC°Qf = —4rnof, feQx.

Similarly, the inelastic scattering operator (11.8) becomes

(C')(x,v) = ~4rf(r,v) (b= g(r,v1) + H(v? ~ 1)g(r,v))

v

+ %g(rav+)/f(rvv+w/)dw
g2

+ b, ) H(v? — 1) / Frv w)de',  (11.104)

SZ
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where again the Maxwell molecule hypothesis requires
0 < Ein < &(r,0) < gy < +oo  for (r,v) € R? x [1,00); (11.105)

that is, the function g in (11.10) (or in (11.90)) can be taken to be 1. As we
show, it is more convenient to replace the speed v by the kinetic energy related
variable & = v2, as explained in Subsection 11.6.1. As from now on we only
work with the energy variable, it should not cause any misunderstanding if we
keep the same notation for all the functions appearing in the problem. With
this convention, the Cauchy problem for the limit hydrodynamic equation
(11.64) takes the form

Oup = €0u(d(r,€)0ep) — (H<§—1>m<r,f>+b S hnire+ >)
|

+ Tm(r7£+ Dp(§+1) +bH(E = )m(r,&)p(€ — 1),

p(O) = Bv
(11.106)
where, now, m(r, §) = 4ng(r, £). The space X, defined through (11.85) changes
to
X =L (R x Ry ¢, dprg), (11.107)

where
dire = dpedr = \/Edédr, (11.108)

and where, in the definition of the measure dug, we dropped the unessential
factor 1/2 coming from the change of variables v?dv = \/£d£ /2.

Remark 11.24. Before proceeding any further, we note that the theory of sub-
stochastic semigroups cannot be applied directly to problems in X} as it es-
sentially depends on dissipativity of the involved operators, which was easy
to prove in X. In X}, however, the inelastic collision operators fail to be dissi-
pative. To show this in the isotropic case, which is relevant here, we evaluate

/gk/ch €)dpe = /H (O)EM21(€)V/€dg
0 0
/ gk}Q €17 7€) /Ede
1

k2
_ / (e 1) (g - 1) (e Vede

0

and similarly,
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/5’“/%” €)due = b/\/legsﬂg’cﬂf (€)VEde
0 0

7 (k+1)/2
o [ete+ 0T e e Ve

0

® k)2
B e
0

To see the meaning of the above formulae more clearly, let us take, for instance,
k =2, g =1 in which case

/ €5/2(C £)(€)de = b / VETLf(€)de — / VEF(©)de
R3 0 1

If f has the support in the unit ball, then the right hand side is positive.
On the other hand, if the function f > 0 has the support outside the ball of
radius r > b2/(1—b?) (recall that b < 1), then the right-hand side is negative.
Therefore C? is not dissipative in Xj.

Let us recall the convention that for any operator S in X with domain
D(S), we denote by Dy(S) the domain of its part in Xj. As this not cause
any misunderstanding, we use the same notation for the operator and its part
in Xk.

Theorem 11.25. For any k > 0, the operator T = D — N + B with do-
main D (T) = Dy(D)N Dk (N) generates a positive semigroup in Xy, denoted
hereafter by (G (t))i>o0-

Proof. First we observe that we can repeat the first part of Theorem 11.20
in X proving that Das defined on Dy (Dy) = Dg(D) N Di(N) generates a
semigroup of contractions. Furthermore, this statement remains valid for the
operator of multiplication by any function of variables (r,¢) satisfying the
estimate of the form (11.89).

We have the following decomposition

D+PC'P=D-N+B, +B_.

Due to the translational character of the operator C?, it is convenient to use
the reduced energy ¢ € [0, 1], as in the dishonesty part of Subsection 10.4.4,
so that £ = (+n if £ € [n,n+ 1) and to redefine all functions as functional
sequences in the following way: for n =0,1,2... and fixed ¢ € [0, 1),

pn(r,¢) = p(r, ¢+ n),
dn(ra C) = d(r,(—!—n),
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mn(r’ C) = m(r7<+ n)v
Cn =V C+n

pa(r,€) = C’g“mm( 0):

similarly we define D,, = (20,(d,(r,{)d:) and D¢, denotes this operator
acting in X, (with fixed ().
By (11.91) we obtain

<027

1
,/14-44447 n(r,0) <oy /14 —— < v2, (11.109
C+n <p _02 C+n_C2 ( )

for allr € R3,¢ € [0,1), and n > 0 (n > 1 in the last inequality).

As is clear from the proof, the dependence of the coefficients on r is not
essential and therefore we drop r from the notation.

Using the above notation we can introduce an equivalent norm in A,

11l = / Gollfol de<+zw2 / GG Ol de,  (11.110)

where f = (f;);en, With f;(¢) = f((+7), j € No. Then the domain Dy (PCP)
can be identified by the condition

/ o6 Ol + 5717 / G550l ¢ < o0,

It simplifies the notation if we introduce, for any ¢ € [0,1) and f = (f;);jen,.
the functional

1 £llx,.k = Gl follx, + lek/ijHfjHXT,
=

so that the norm in X can be expressed as

1
11 = / TS
0

With this notation the equation (11.106) can be written in the recursive form

Otpo = Dopo — bpopo + pop1,

atpn - ann - (bpn + mn)pn +pnpn+1 + bmnpnfl
s (11.111)
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where n =1,2,....

The crucial step in the proof is to show that the resolvent R(A\,D — N +
B.) exists and is a positive operator in X} for any A > 0,k > 0. We find
R(\,D — N + B,) almost constructively using (11.111). To do this we have
to solve

go = (A + bpo — Do)po

gn = (/\ +my, + bpn - Dn)pn - bmnpn—l

5, (11.112)

forn=1,2,... and g = (gn)nen, € X.

Let us denote Reo(A) = (A+bpo—D¢ o) ™! and Re (A) = (A +my, +bpy, —
DCJL)’1 for n > 1 in X,., where these resolvents exist by the considerations
at the beginning of the proof. Moreover, they commute with any function of

¢elo1).
We claim that for any fixed ¢ € [0,1), n=10,1,..., and A >0

n n—i—1
= CLRC’"(/\) (ZOC" ( 11 bpn—l—lRan—l—l()\)) g¢> (11.113)
n i= =0

with the convention that the product denotes the composition of operators
taken from right to left with increasing indices, and, if n —i—1 < 0, then it is
equal to the identity operator I on X,.. In fact, for n = 0 the formula (11.113)
gives

0 —i—1
po = C%RC’O(A) (;}Ci ( H bpn—l—1R<,n—l—1(>\)> gi) = R¢0(MN)go

=0

which agrees with the direct solution to the first equation of (11.112). The
basic recurrence formula which enables us to prove (11.113) is

Cn
Cn-i—l
Assuming that (11.113) is correct for n — 1, we find from (11.112) that

Pn = Rgn(/\)(gn + bmnpn—l)

Pn = Mpo1, n=0,1.... (11.114)

n—

1 1 n—i—2
= —ngn(A) <<ngn+bpn—1R<7n—1()\) ( OQ‘ ( H bpn_l_chm_l_Q()\)) gz>>
" = 1=0

n—1 n—i—1
= iRg,n(>\) <Cngn + Z:OQ < 11 bpn—l—lRC,n—l—l(A)> gi>

=0

3

= iRg,n(A) <ZQ ( ﬁ bpnuRg,nu(A)) gi> : (11.115)

=0 1=0
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Asin (11.95) and (11.96), we obtain by (11.109) that for almost any ¢ € [0,1),

po () .
R S

b
lbpoReo Il < 3200

bc2% < \/ibCQ
661%4*01 + A o \/ibcl +01‘i’)\7

[[[bpi R s (M| < iz,

s (11.116)

where ||| - ||| denotes the operator norm in X, and in the last inequality we
used monotonicity of the function z — az/(bz + ¢) for positive z.

For A > v/2b(cy — ¢1) — ¢1 we have B\ := v/2bca/(v/2bey +¢1 + \) < 1.
Thus

n—i—1
Il TT tpa—ic1Rem—ia DI < B3 (11.117)
=0
fori=0,...,n—1,and for i =n, ||| T[], bPn_i—1Ren1_1 M| = |[I1]]] = 1,

by definition. Hence, applying the X, norm to (11.115) we obtain

n—1 n—i—1
Cullonllx, < ||Ben(X) (ZOQ H bpn—1-18¢ n-1-1(N)gi +Cngn> H
= 1=0
1 (n=l »
<3 (;}Q”%H)ﬂﬁ; ! +Cngn|XT> . (11.118)

By (11.110) we have to prove that the series

X, + 2 nk/QCann|

n=1

X, (11.119)

Gollpol

is integrable over [0,1]. To do this, it is enough to prove the statement for
any remainder of the series. Let us fix ng > 1 (which is determined later) and
consider

00 1 o n—1 i
5 a2l < 3 5 (S Glale 8+ G olx, )
n=no n=ng \1=
1 [ee] . [ee] - [ee] .
=< | XGlalx 857 X n*26 | + X i %Glglx, )
A 1=0 n=n; i=ng

where 1; = max{ng, i+1} and the change of the order of summation is justified
by the positivity of the terms.

Consider now the function r — r*/ 2/3%. This function is monotonically
decreasing for r > rg = —k(2In 8\)~!. Taking ng > max{2,79,1 — (InB8y) "'}
we have the estimate
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> nk/2,6’§ < / rk/zﬁg\dr.
n=mn; 1
Mi—

In order to shorten notation, let v = ﬁ;l. Then

/rk/Qﬂgdr: / rk/Q’y*Tdr:(ln’y)f(lJrk/Q) / 2K2e=%
n;—1 ni—1 (mi—1)In~y

and the last integral is the well-known incomplete I" function. From [3, For-
mula 6.5.32] we infer that for some M}, which is independent of the lower limit
of integration z > 1 (but dependent on k) we have

/zk/2efzdz < My2*%e=, (11.120)

z

From the definition of ng, for any v and ¢ > 0 the lower limit of integration
satisfies (n; — 1)ln+y > 1. Thus we can use the estimate (11.120) to obtain

oo

S nk/20 < (Iny)~(HR/2) / 2F2e 24z < My (Iny) = (g, — DF2p7 1
o (ni—1)Iny

< My(Iny) ™ (m = D255, (11.121)

where we used the estimate

;i — 1 —1
Ui . max{no, ,1}21
1

7

for i > 0 and 8y < 1, so that 3, (i—1)/i 0B < 1. Moreover, because g — 1 =
no —1 > 0, we also have 37°~ 1< B = 1. Similarly, we have

-1 1
i zmaX{nO. J}Sno
1 7

0 M;,
> 7”Lk/2Cn||Pn||xr_>\1 <<o||90||X (no—1)*2+ Z( —1)*2¢1gill x,

n=ngo

for ¢ > 1 so that

+ 5%,

1=n0

Mknk/z k/2 k/2
<A Cllnll 5 Gl + i,

i=1 i=1

MH I
\n 9l X, k>
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where g = (¢;)ien. For the initial part of the series (11.119) we have

ot s Lot /nl 4o n—i | k/2
Zln Gallpnllx, < " 21 n" =Gl gillx, By " + 1" Callgnll x,
n= n= 1=0

1 ng1 MinZt?
< Fll.i (£ 204 1) < FE gl

A

where Mj is independent of [y and ng ‘and where we used the fact that
n—14>0for0<i<n-—1,sothat 8" < 1 in the above series. The final
inequality was obtained by integration. Moreover

po = R¢o(N)go = (A +bpo — Do) ' g0 = Co(CoA + b¢ima — ¢oDo) ™ go,

which shows that
po € Di(By) = Dk(J\/), (11.122)

and, on the other hand, gives the estimate

1
[¢opollx, < XCOHQOHXT-
Combining all the estimates we see that for sufficiently large A there exists a
constant
My, = 2My(Invy) " (ng + 1)’6/2 + M,/Cn?fk/z +1

(depending on k and, through ~, on \) such that

M »

ol < 22

g1l (11.123)

Next we prove that, as constructed, R(\, Dar+B4.) : Xy — Di(Dar) = Di(D)N
Dy (N). To do this, by Eq. (11.122), it is enough to show that

A=D+N)p=A—-D+N)RA,D—-N+B;)g € X

or equivalently that the sequence ((A— D, +N,)pn), >, has finite norm
(11.110). Here Ny = bpol and N,, = (m,, + bp,)I for n > 1. However, from
(11.113) we have for any n >0

n n—i—1
(A =Dy + Np)Cnpn = ;)Ci ( H bpnllRC,nll()‘)> 9i-

=0

Hence we can repeat all the estimates leading to (11.123) with the single
difference that the factor 1/ is missing. This factor does not, however, affect
the convergence of the series; thus p € Dy (D) N Dy(N). Because Dy (B) =
Dk}(N), we see that Dk(D—N+B+) = Dk(D)ﬂDk(N) = Dk(D)ﬂDk(PCiP).
This shows that the resolvent exists for all sufficiently large A and by (11.113),
it is a positive operator.
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To complete the proof, we recall that the operator Dor = D — A generates
a positive semigroup. By calculations similar to those of Remark 11.24 and
Proposition 11.5 we have

/5’“/2B+f \/dsfb/m

:b/m(z+1)

Because (1 +7)%/(1+r%) < C,, where C, =271 for « > 1 and C, = 1 for
0 < a < 1, we see that B, is a positive operator bounded from Dy (Dar) to
X);. We have just proved that the resolvent of Dy + B4 exists and is positive,
hence we can use Desch’s theorem, Theorem 5.13, to claim that Dar + B4
generates a positive semigroup. For B_ we have the estimate

Ek/Z
ey VE2f(€ = 1)V/€dg

i 1f(z)(l + 2)*/2\/zdz.

e nw o < [meE S0 e e

0
< B / ()2 e,
0

thus, also using Proposition 11.5, we see that it is bounded in X} and the
application of the Bounded Perturbation Theorem ends the proof. O

Remark 11.26. To prove Theorem 11.25, we split the operator D — N + B in
a rather arbitrary way. A question now arises as to whether another splitting
could produce a different semigroup. Because, however, the domain of the
generator of the semigroup is simply Dy (D) N Dy (N'), we see, by Proposition
3.8, that this is a unique semigroup whose generator, restricted to Dy (D) N
Dy (N), coincides with D — A + B. In other words, this is a unique semigroup
whose generator, restricted to sufficiently regular functions, is given by the
expression in (11.106).

11.6.7 Error Estimates

Now we are ready to provide the error estimates. To simplify calculations we
assume further that both ¢ and g are independent of r. Let us recall that in
(11.13), (11.14), and (11.15) we have defined
X, ={feX; (1+%fex}
Xp={fe€X; dfcx, B <1}
Xir = {f € Xi; 02f € Di(T), |B] < 1, (11.124)

where 7 = D — N + B. Note that from the definition, Dy (7) C X} and hence,
in particular, Xy 7 C Aj.
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Lemma 11.27. If g and o are independent of r, then (G (t))i>0 is a strongly
continuous semigroup in any Xj.

Proof. In this case the semigroup (Gp, ,(t));>0 has explicit representation:
for any v > 0

[Goy., (1) f](x,0) = e G((0Pd)t) f](x, 0),

where (G(t))i>0 is the diffusion semigroup (3.61). By (3.62) we see that
(Goy ., (t))e>0 is a strongly continuous semigroup in any W1 (R?) for any fixed
v. Because the distributional derivative on its maximal domain is closed, from
(3.31) we see that it also commutes with the resolvent of D ,. Thus, we can
apply Proposition 3.13 in the first part of the proof of Theorem 11.20 to see
that (Gp, (t))1>0 generates a strongly continuous semigroup in any Xj; sat-
isfying, in particular, appropriate versions of (11.94) and (11.96). Hence, we
can repeat the first part of the proof of Theorem 11.25 with the understand-
ing that the resolvents R¢ o(\) and R¢ (M) are restrictions to W} (R?) of the
corresponding resolvents from X, and the norms ||| - ||| in (11.116) are the
operator norms in W/(R3) which, by the comment above, satisfy the same
estimates. Hence, the resolvent satisfies

PR\, Dy + By)u= R\, Dy + By)dPu, we Xy, |0 <1, (11.125)

and it is a bounded operator in Aj;. Unfortunately, we cannot proceed as
in the conclusion of Theorem 11.25 as Ajj is not a Banach lattice and thus
Desch’s theorem is not available. However, using again Proposition 3.13 and
(11.125) we get

O Goytn, () f = Goyis, (D2 f

for f € X, |B| < . Because obviously B_ is bounded in A} we can use the
Bounded Perturbation Theorem to obtain the thesis. O

We prove regularity properties of the bulk and initial layer parts in two
lemmas. Before doing this, however, we recall that the assumption that the
scattering cross-sections are isotropic, adopted in (11.104), yields PC?f =
C'Pf and consequently PC*Qf = 0 for any f € D(C?). Thus, terms containing
PC*Q and QCP in (11.74) and (11.77) vanish and the error terms simplify
to those considered below.

o (e}
Lemma 11.28. Let v= Pfe X33 7. Then for each interval [0,%0], 0 < to <
400, there exists a constant M such that

(QCQ) QAP v — (QC°Q) ' QAQ(QC Q) ' QAP || x (11.126)
+ max [ 49Qas(t) + QCIQ (1) + €QC! Qi (t) 0y (1) —edyta t)]| < M
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Proof. Let us fix 0 < tg < oo. We start by noting that in the isotropic case
we have (QC°Q)~1f = —(47o) "1 f. First we consider

AgQus(t) = A9(QC°Q) ' QAQ(QAC Q) ' QA(Pp.

It is enough to analyse t — A3p(t). By Lemma 11.27, the assumptions are suf-
ficient for the differentiation with respect to r to commute with the semigroup
(G7(t))1>0- Using Theorem 11.25 we have

3 o o
1AGP(1) ]2 < le; IGT ()07 v |2 < Ml s,
=0

for some constant Mj.
Next we consider QC*"Qw1 (t). Simple calculations give

QC'Quy (t) = —(4mo) " C Aop(t).

Using Proposition 11.5, Theorem 11.25, and Lemma 11.27 we obtain

. 1 o
1QC Qo (1) [l < My ||(1+v™ 1) Aop(t)|lx < My 3 [lo(1 +v™)Gr ()07 ]|
18]=0

1 o o
= |ﬁ§\: IGT ()07 v | < M| 0 |1,
=0

uniformly on [0, ¢o]. The next term to consider is QC'Quip. As above
. 2 o
IQC Qs ()| x < Mzl|(1+ v ") AFp(t)llx < M5 3 [[(v* +0)Gr ()37 v ||l x
181=0

o
< Mg” v HXzz'

To estimate the next term we first observe that p is differentiable in the norm
of X11. Thus we have

01 (1) = —(470) ' QAPIp(t) = —(4ma) QAT p(t),

and therefore

1 o o]
101 (8)l 2 < My 32 |GT(OTO 0 [laey < Mall v |l -
|B8]=0

Similarly, because ws(t) = (QC°Q)1QA,Q(QC*Q)1QA(Pp and p is differ-
entiable in the norm of X5, we have

By (t) = (4m0) 2QAZp(t) = (4m0) 2QATT p(t),

and, as above,
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2 o o]
02 ()l < M5 32 |GT(TO 0 [laey < M5l ¥ [l -
|B8]=0

The estimate of the first term in (11.126) follows easily as the assumptions of
the lemma ensure that the function ¢ — A2p is continuous. Combining all the
estimates we complete the proof of the lemma. 0O

The regularity of the initial layer is dealt with in the next lemma.

o [e]
Lemma 11.29. Let w= Q f€ &y ¢ci. Then there exists a positive constant L
such that for any t > 0,

| A0QiEio(t/€2) || x + €| QCIQan (t/€2)|| x < Le4momint/", (11.127)

Proof. Let us first consider the term QC*Quy(t/e?). Because C* is bounded,
we see that we have to check only the behaviour of C% wg(t/€®). Moreover,
due to the explicit representation wg(t/e?) = e~ 477t/ < W, the multiplication
by v% commutes with the semigroup; hence the only troublesome part might

be B wo(t/e*). We have, however,

v

, 7 2.1 .
|BL @o(t/€)||x = 4 / / (VR + 1)1 L Lm0 | (v, dv
2 0

< e tmomntl kb |

for some constant L’. The estimate in X is obtained by integrating the above
inequality with respect to r.

The estimate of AoQuy(t/€?) is straightforward as Ag commutes with the
semigroup generated by QC°Q and therefore the regularity of the initial data
carries forward to the solution. The lemma is proved. O

Now we can prove the main theorem.

Theorem 11.30. Assume that P f€ Xz 7 and Q fe Ay ci. Let f. be the
solution of (11.69) with the initial datum f, and p be the solution to (11.64)

o]
with the initial value Pf. Then, for each interval [0,tg], 0 < to < +00, there
exists a constant K depending only on the initial data, the coefficients of the
equation, and tg, such that

1Fe(t) = p(t) — e™*™/<Qf |2 < Ke (11.128)
uniformly on [0, o).

Proof. For the proof we note that the assumptions on the initial data adopted
here are not weaker than that of any lemma (in particular, D(T) C D(Ap) N
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D(D)) so that all steps of this subsection are justified. In particular, f,p, =
(p, Wo + €1 + €2w2) € D(Ag) N D(C?) and thus the error equation (11.76) is
correct. Hence, using Lemmas 11.28 and 11.29 we have, by (11.77),

lec(®)llx < €l (QRCQ) QAP v —€(QCQ) ' QAQ(QC Q) QAP v ||x
t
+ 6/ | A0Quwa(s) + QC* Qw1 (s) + eQC Qs (s) — D1 (5) — €5 (s) ||X ds
0

t
+ %/HAO(@{EQ(S/E2) +e(@0i@1ﬂ0(5/62)||xd5
0

t/e?
=eMty+ el / e~ 4T ominT dp < Ke .
0

The only difference now is that in (11.75) and (11.77) we had e = fe — p —
W — €1 — €202, whereas in (11.128) the last two terms are missing. However,
clearly the estimates of Lemma 11.28 can be carried also for w; and w9 alone,
showing that they both are bounded on [0, ty]. Because they are multiplied
by € and €2, respectively, they can be moved to the right-hand side of the
inequality (11.128) without changing it. O

11.6.8 Other Limit Equations

In this subsection we briefly describe rigorous results relevant to other hy-
drodynamic limits formally derived in Section 11.6. As the proofs are easier
variants of those for the diffusion-kinetic equation analysed above, we only
focus on their salient points.

Purely Diffusive Hydrodynamic Limit

According to Theorem 11.19 the hydrodynamic limit of the scaled equation
1 1 .
Ofe=—-Aofe+ 5Cfc+eC'fe (11.129)
€ €

is given by
Orp = v2dAp. (11.130)

Equation (11.130) is a special case (with n = 0) of the equations treated
in Theorems 11.19 and 11.25; hence we have all necessary properties of the
solution of the limit equation. In particular, it is clear that the solution exists
in all moment spaces A;.

Using the isotropy of scattering, we arrive at the following counterpart to
(11.70),
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1 ]
0ve = —PAQu, + ePC'Pu,,
€
1 1 - 1
Oywe = —QA Pv. + —QA(Qu, + eQC*Qu, + fQQC’eQwe. (11.131)
€ € €

Apart from the hydrodynamic equation (11.65), all other terms of the asymp-
totic expansion coincide with those given by (11.74). Defining the approxima-
tion and the error as in (11.75), we obtain the error equation in the form

1 1 ) . 1
Oree — —Apec — 5 C%c — eC'e. = eAgQuy + ePC'Pp + — AgQug
€ € €

+ EQC'Qwy 4 2QC Qwy + cQC'Qwy — €01 — €204,

with the initial condition

ec(0) = €(QC*Q) QAP v —2(QCQ) "1QA;Q(QC Q) *QAGP v .

Clearly the estimates are analogous, the only difference being that this time p
is a solution of the diffusion equation in r multiplied by v?, as seen from Eq.
(11.130), and the solution to this equation must have the regularity required
in Lemma 11.28. Because the operators of differentiation and multiplication
by v* commute with D, and D generates a Cyp-semigroup, the assumptions
are much milder here and the proof of the counterpart of this lemma is much
easier; hence we only sketch it. Recalling that

X = WHRE, X, 1),
we have the lemma.

o (o)
Lemma 11.31. Let v=Pfe Xyy. Then for each interval [0, o], 0 < tg < 400,
there exists a constant M such that

I(QCQ) QAP § —(QC°Q) ' QAQ(QC Q) IQAP T [ (11132)
+ max [|40Qua(t)+ €QC'Qun (6)+ QT Qi (1)~ 0y (1) — Dy ()] < M.

tel0,to

Proof. Following the approach of Lemma 11.28 we see that the estimate
(11.132) is satisfied if: v38§5€ X for |B8] =3, (v+ 1)8?5}6 X for B = 1,
(v2+0)dP v € X for |8 = 2, and v*8P v e D(D) for |3| = k, k = 1,2. Recalling
the definition of D(D) we see that if € Xyy, then all the above requirements
are satisfied. O

The initial layer terms are the same as before and so for the estimates, we
can use Lemma 11.29.

To make the statement of the final theorem more clear, we recall that the
space X; ¢+ used in Lemma 11.29 is given by
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Xioi = WHRE, Xy i),

To ensure that f. is the classical solution, in addition to the assumptions of

Lemma 11.31 we require that P f€ D(C?) . With these we have the following
counterpart of Theorem 11.30.

Theorem 11.32. Assume that P fe Xy ci and Q f€ Xy1 ¢i. Let fe be the
solution of (11.129) with the initial datum f, and p be the solution to (11.150)

[e]
with the initial value Pf. Then for each interval [0,1p], 0 < tg < 400, there
exists a constant K depending only on the initial data and the coefficients of
the equation and ty, such that

1£8) = p(t) — e+ Q [ |l < Ke (11.133)

uniformly on [0, o).

Purely Kinetic Hydrodynamic Limit

We present the counterpart of Theorems 11.30 and 11.32 for the scaling

1 .
Orfe=Aofe + gCefe +C"fe (11.134)
which results in the ‘hydrodynamic’ limit (11.66)
Oip = PC'Pp, (11.135)
where, as before,
, 1
PC'Pp = — (H(§ —1)m(&) +b €%m(f + 1)) P
E+1
e e F Da(E D)+ BH(E = 1m(g)p(€ — 1),

with m(§) = 4ng(§).

This problem was investigated in [27] so we only mention here that the
solvability of (11.135) in the moment spaces X}, can be proved in the same
way as in Theorem 11.25. The estimates, however, are easier, as the diffusion
operator is not present. It also follows that in this case there is no need to go
to wy as the terms

p, w1 =—(QCQ)'QAPp, o= e Cw,

where 7 = t/e, and p is the solution to (11.135) with the initial condition

p(0) =1, suffice to obtain the desired estimates. This follows as the error of
the approximation e, := f — (p, W — ew;) formally satisfies
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1 . B , -
Orec—Apec——C . —C'e. = eAgQu1+ AgQuo+eQC"* Qw1 +QC* Qg — €Dy,
€

(11.136)
and the initial condition

ec(0) = —ew (0) = ¢(QCQ) " 'QAPY .

The conditions under which the error is of the order of € are given in the
following theorem, which was originally proved in [27].

Theorem 11.33. Assume that Pf € Xoy ci and Qfe€ Xy ¢i. Let fo be the
solution of (11.134) with the initial datum f, and p be the solution to (11.66)

with the initial value Pf. Then for each interval [0,t0], 0 < to < 400, there
exists a constant K depending only on the initial data, the coefficients of the
equation, and tg, such that

1£.(8) = p(t) — ™4t Q f |l < Ke (11.137)

uniformly on [0, to].

Continuity Equation as the Hydrodynamic Limit

The last case of the limit evolution in the hydrodynamic space N(C*°) is given
by the scaling

; 1
Orfe = Aofe +eC' fe + =C°f, (11.138)
€
which formally produces the trivial hydrodynamic limit
3tp =0.

For the sake of completeness we note that the standard asymptotic procedure
(with the initial layer time 7 = t/€) gives the same terms of the expansion
as in the case of the purely kinetic hydrodynamic limit. The error equation
takes the form

e — Agee — eCle, — %C"ee6 = eAgQuw; + AgQug + ePC'Pp + 2QC Qi
+eQC Qg — €Dy, (11.139)
with the initial condition
ec(0) = ¢(QC*Q) QAP ,

and we see that the only difference from (11.136) (apart from possibly higher
powers of € in some places) is the presence of the term ePCPp on the right-
hand side of (11.139). However, the solution to the limit equation is constant
in time,
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p(t) = pl0) =4, (11.140)

so that all regularity requirements for p will be satisfied provided they are
imposed on the initial value 0.
Thus we can state the theorem

Theorem 11.34. Assume that Pfe Xy ci and Q f&€ Xy ¢i. Let fo be the

solution of (11.138) with the initial datum f. Then for each interval [0, tg],
0 <ty < +o00, there exists a constant K depending only on the initial data,
the coefficients of the equation, and tg such that

If(t) =B f —e~™°Q f ||x < Ke (11.141)

uniformly on [0, o).
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Index

*-weak convergence, 18

A-bounded operator, 20

AC(I)-space of absolutely continuous
functions on I, 16

AlL-space, 51

AM-space, 51

A |p — restriction of operator, 13

B, — ball with radius r» and centre at
the origin, 9

B »— closed ball with centre x and
radius r, 9

Coh-semigroup, 69

ImA, 13

K B-space, 58

KerA, 13

L(X,Y) — the set of operators from X
toY, 13

Lo(£2) - space of measurable functions,
11

Lo(£2,dp)- space of measurable
functions, 11

L s(R™) — Bessel potential space, 91

R(X, A) — resolvent of A, 34

W, (£2)-Sobolev space, 86

Sz-imaginary part, 60

Rz-real part, 60

z-complex adjoint, 60

z4-maximal right point, 301

z_-maximal left point, 301

X A-characteristic function of A, 25

Ry, 9

No, 9

(Za)aca- a net, 55

(4}0(6;)7 70

w1(G)-growth bound, 82

92—the derivative 8511 ---85:;, 10

(Ga(t))e=0-semigroup generated by A,
70

o - elastic collision frequency, 377

o-Dedekind complete Riesz space, 47

o-finite measure, 10

o-order complete Riesz space, 47

o(A) — spectrum of A, 34

oc(A) — continuous spectrum of A, 34

op(A) — point spectrum of A, 34

or(A) — residual spectrum of A, 34

g - inelastic collision frequency, 377

abs(f)-abscissa of convergence, 29

co-space of sequences converging to 0,
18, 38

lp-space of sequences summable with
power p, 38

s(A) — spectral bound of A, 36

t+(x)-maximal right time, 300

t_(x)-maximal left time, 300

z-clusters, 199

To ]- increasing net, 55

To T x, 55

o T < 2, 55

To |-decreasing net, 55

To | x, 55

Ta |> x, 55

G(M,w)-class of generators, 70

abscissa of convergence, 29
absolutely continuous function, 16
adjoint operator, 22
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approximate spectrum, 34
Archimedean Riesz spaces, 44
associated Sobolev space, 80
assumption (As), 326
assumption (Ar), 327
assumptions (A1) — (As), 289
assumptions (A4),(As), 322
asymptotic analysis, 371

Banach lattice, 50
Banach—Steinhaus theorem, 18
Bessel potential space, 91
Bochner integral, 25

Bochner measurable function, 25
Borel measure, 10

Borel set, 10

boundary operator, 355

bulk approximation, 373

bulk part, 396

Cauchy problem, 69

Chapman—Enskog procedure, 372

characteristics, 293

classical solution, 69

cluster, 197

collision frequency, 288

collision frequency in semiconductors,
292

collision kernel, 327

collision operator, 289

collision operator in semiconductors,
292

complex Banach lattice, 62

complexification, 60

compressed Chapman—Enskog proce-
dure, 394

conservative boundary operator, 355

continuous spectrum, 34

convolution, 31

Datko theorem, 99

daughter particles, 199

decreasing net, 55

Dedekind complete Riesz space, 47
defect function, 164

density of particles, 197

Desch perturbation theorem, 144
directed set, 55

directed upward set, 47

dishonest process, 158

dissipative boundary operator, 355
distributional derivative, 15
down-scattering, 380

dual space, 16

duality set, 83

Duhamel equation, 121
Dyson—Phillips series, 121

elastic collision frequency, 376
elastic collision operator, 375
elastic collisions, 374
essential range, 38

essential supremum, 11
explosive process, 158
exponential growth bound, 29

field particles, 287, 288, 374
fragmentation, 197
fragmentation rate, 199

free streaming operator, 289

gain term, 199, 286
generalised derivative, 15
generating cone, 44
generator of semigroup, 4
graph norm, 14

growth bound, 82

Hahn-Banach theorem, 16

hard collisions, 286

hard potentials with angular cut-off,
378

hard spheres, 286

Hille-Yoshida theorem, 72

honest along trajectory, 168

honest substochastic semigroup, 161

honest trajectory, 168, 261

hydrodynamic part, 396

hydrodynamic space, 373, 382

image, 13

incoming boundary, 301
inelastic collision frequency, 376
inelastic collision operator, 375
infimum, 42

initial layer, 373, 396

invertible operator, 21

Kantorovic-Banach space, 58



kernel, 13

kinetic energy, 393
kinetic equation, 285
kinetic part, 396
kinetic space, 373

Laplace integral, 29
Laplace transform, 29
lattice embedding, 58
lattice homomorphism, 53
lattice isometry, 53

lattice norm, 50

lattice operations, 45
Lebesgue measure, 10
linear Boltzmann equation, 375
locally integrable, 12
Lorentz gas, 374

loss term, 199, 286

lower bound, 42
Lumer—Phillips theorem, 84

maximal element, 42

maximal interval of existence, 300

Maxwell molecules, 286, 378

measurable, 10

measure space, 10

microreversibility principle, 374, 376

mild solution, 71, 94

mild solution of nonhomogeneous
problem, 94

minimal element, 42

Miyadera perturbation, 127

Model A, 380

Model B, 380

mollification, 12

mollifiers, 12

moment inequality, 91

multiplication operator, 38

Neumann series, 35
norm convergence, 18
nul-solution, 108

open mapping, 21

operators adjoint to each other, 22
order complete Riesz space, 47
order continuous norm, 57

order convergence, 55

order interval, 42
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order unit, 50
ordered vector space, 43
outgoing boundary, 301

part of the operator, 13
partial order, 42
particle, 197

particle-mass distribution function, 197

point spectrum, 34
positive cone, 42, 43
positive element, 42
positive operator, 52
positive semigroup, 97
power law, 200
principal ideal, 49
pseudoresolvent, 102

Radon—Nikodym property, 30
rate equation, 197

realisation, 2

reflexive, 17

regularisation, 12

rescaled semigroup, 74
residual spectrum, 34
resolvent, 34

resolvent identity, 35
resolvent positive operator, 97
restriction of operator, 13
Reuter—-Lederman method, 183
Riesz space, 43

Riesz subspace, 49

rigid spheres, 286, 378

second dual, 16

semigroup, 3

semigroup of contractions, 73
shattering fragmentation, 200, 231
singularly perturbed problems, 373
Sobolev space, 86

Sobolev space of fractional order, 86
Sobolev tower, 80

space of type L, 39

spectral bound, 36

spectrum, 34

stochastic semigroup, 157, 159
streaming operator, 289

strict solution, 69

strictly substochastic, 161

strictly substochastic semigroup, 158
strong convergence, 18
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strong convergence of operators, 19
strongly continuous function, 24
strongly continuous semigroup, 69
subnet, 55

substochastic semigroup, 159
substochastic semigroups, 157
support of function, 10

supremum, 42

surjective operator, 21

test particles, 287, 288, 374
the spectral radius, 35

trace, 86

trace (transport theory), 310
translation semigroup, 75
transport operator, 289
Trotter—Kato theorem, 104

type of semigroup, 70

uniform growth bound, 70
uniform operator convergence, 19
up-scattering, 380

upper bound, 42

vector lattice, 43
vector sublattice, 49

weak convergence, 18

weak unit, 50

weakly Cauchy sequence, 18

weakly convergent sequence, 18

weakly sequentially complete Banach
space, 18



